Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Opt Lett ; 47(14): 3511-3514, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35838716

RESUMEN

We report on the generation of GW-class peak power, 35-fs pulses at 2-µm wavelength with an average power of 51 W at 300-kHz repetition rate. A compact, krypton-filled Herriott-type cavity employing metallic mirrors is used for spectral broadening. This multi-pass compression stage enables the efficient post compression of the pulses emitted by an ultrafast coherently combined thulium-doped fiber laser system. The presented results demonstrate an excellent preservation of the input beam quality in combination with a power transmission as high as 80%. These results show that multi-pass cell based post-compression is an attractive alternative to nonlinear spectral broadening in fibers, which is commonly employed for thulium-doped and other mid-infrared ultrafast laser systems. Particularly, the average power scalability and the potential to achieve few-cycle pulse durations make this scheme highly attractive.

2.
Opt Express ; 29(24): 40333-40344, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809377

RESUMEN

Short-pulse metrology and dynamic studies in the extreme ultraviolet (XUV) spectral range greatly benefit from interferometric measurements. In this contribution a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode is presented. The autocorrelator works under a grazing incidence angle in a broad spectral range (10 nm - 1 µm) providing collinear propagation of both pulse replicas and thus a constant phase difference across the beam profile. The compact instrument allows for XUV pulse autocorrelation measurements in the time domain with a single-digit attosecond precision and a useful scan length of about 1 ps enabling a decent resolution of E/ΔE = 2000 at 26.6 eV. Its performance for selected spectroscopic applications requiring moderate resolution at short wavelengths is demonstrated by characterizing a sharp electronic transition at 26.6 eV in Ar gas. The absorption of the 11th harmonic of a frequency-doubled Yb-fiber laser leads to the well-known 3s3p64p1P1 Fano resonance of Ar atoms. We benchmark our time-domain interferometry results with a high-resolution XUV grating spectrometer and find an excellent agreement. The common-path interferometer opens up new opportunities for short-wavelength femtosecond and attosecond pulse metrology and dynamic studies on extreme time scales in various research fields.

3.
Opt Lett ; 45(23): 6350-6353, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258809

RESUMEN

We present a carrier-envelope offset (CEO) stable ytterbium-doped fiber chirped-pulse amplification system employing the technology of coherent beam combining and delivering more than 1 kW of average power at a pulse repetition rate of 80 MHz. The CEO stability of the system is 220 mrad rms, characterized out-of-loop with an f-to-2f interferometer in a frequency offset range of 10 Hz to 20 MHz. The high-power amplification system boosts the average power of the CEO stable oscillator by five orders of magnitude while increasing the phase noise by only 100 mrad. No evidence of CEO noise deterioration due to coherent beam combining is found. Low-frequency CEO fluctuations at the chirped-pulse amplifier are suppressed by a "slow loop" feedback. To the best of our knowledge, this is the first demonstration of a coherently combined laser system delivering an outstanding average power and high CEO stability at the same time.

4.
Opt Lett ; 45(11): 3013-3016, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479446

RESUMEN

We demonstrate an efficient approach for enhancing the spectral broadening of long laser pulses and for efficient frequency redshifting by exploiting the intrinsic temporal properties of molecular alignment inside a gas-filled hollow-core fiber (HCF). We find that laser-induced alignment with durations comparable to the characteristic rotational time scale TRotAlign enhances the efficiency of redshifted spectral broadening compared to noble gases. The applicability of this approach to Yb lasers with (few hundred femtoseconds) long pulse duration is illustrated, for which efficient broadening based on conventional Kerr nonlinearity is challenging to achieve. Furthermore, this approach proposes a practical solution for high energy broadband long-wavelength light sources, and it is attractive for many strong field applications.

5.
Opt Lett ; 44(7): 1730-1733, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933133

RESUMEN

We report a coherent mid-infrared (MIR) source with a combination of broad spectral coverage (6-18 µm), high repetition rate (50 MHz), and high average power (0.5 W). The waveform-stable pulses emerge via intrapulse difference-frequency generation (IPDFG) in a GaSe crystal, driven by a 30-W-average-power train of 32-fs pulses spectrally centered at 2 µm, delivered by a fiber-laser system. Electro-optic sampling (EOS) of the waveform-stable MIR waveforms reveals their single-cycle nature, confirming the excellent phase matching both of IPDFG and of EOS with 2-µm pulses in GaSe.

6.
Opt Express ; 26(15): 19318-19327, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30114107

RESUMEN

Separation of the high average power driving laser beam from the generated XUV to soft-X-ray radiation poses great challenges in collinear HHG setups due to the losses and the limited power handling capabilities of the typically used separating optics. This paper demonstrates the potential of driving HHG with annular beams, which allow for a straightforward and power scalable separation via a simple pinhole, resulting in a measured driving laser suppression of 5⋅10-3. The approach is characterized by an enormous flexibility as it can be applied to a broad range of input parameters and generated photon energies. Phase matching aspects are analyzed in detail and an HHG conversion efficiency that is only 27% lower than using a Gaussian beam under identical conditions is demonstrated, revealing the viability of the annular beam approach for high flux coherent short-wavelength sources and high average power driving lasers.

7.
Opt Express ; 26(6): 7614-7624, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609314

RESUMEN

It has been recently shown that photodarkening can significantly reduce the mode instability threshold in high power Yb-doped fiber amplifiers, thus resulting in an even more severe limitation to the scaling of the output average power of these systems. Therefore, an efficient reduction of photodarkening in an Yb-doped active fiber will lead to very significant gains in the output average power delivered by such systems. In this context, it has been reported that photodarkening can be significantly mitigated when co-doping a fiber core with Al and P, which makes this approach potentially appealing to increase the TMI threshold. Unfortunately co-doping the fiber core with Al and P also alters the effective cross-sections of the fiber, which has repercussion in the amplification efficiency. Thus, a fiber with a higher P concentration will exhibit lower cross-sections, therefore requiring a higher Yb-ion concentration to reach a certain desired amplification efficiency. However, increasing the Yb-ion concentration leads to higher photodarkening losses, which might potentially counteract the benefits of using P co-doping. In this paper we present a comparative analysis of the expected performance of different fiber amplifiers for a given constant average heat-load and amplification efficiency as a function of the ratio of Al:P concentration in the fiber core. This study indicates which core compositions are more beneficial for increasing the mode instability threshold in Yb-doped high-power fiber amplifier systems.

8.
Opt Lett ; 43(18): 4441-4444, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211885

RESUMEN

In this Letter, we present an optimized nonlinear amplification scheme in the 2 µm wavelength region. This laser source delivers 50 fs pulses at an 80 MHz repetition rate with exceptional temporal pulse quality and 20 W of average output power. According to predictions from numerical simulations, it is experimentally confirmed that dispersion management is crucial to prevent the growth of side pulses and an increase of the energy content in a temporal pedestal surrounding the self-compressed pulse. Based on these results, we discuss guidelines to ensure high temporal pulse quality from nonlinear femtosecond fiber amplifiers in the anomalous dispersion regime.

9.
Opt Lett ; 43(23): 5853-5856, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499950

RESUMEN

In this Letter, we report on the generation of 1060 W average power from an ultrafast thulium-doped fiber chirped pulse amplification system. After compression, the pulse energy of 13.2 µJ with a pulse duration of 265 fs at an 80 MHz pulse repetition rate results in a peak power of 50 MW spectrally centered at 1960 nm. Even though the average heat-load in the fiber core is as high as 98 W/m, we confirm the diffraction-limited beam quality of the compressed output. Furthermore, the evolution of the relative intensity noise with increasing average output power has been measured to verify the absence of transversal mode instabilities. This system represents a new average power record for thulium-doped fiber lasers (1150 W uncompressed) and ultrashort pulse fiber lasers with diffraction-limited beam quality, in general, even considering single-channel ytterbium-doped fiber amplifiers.

10.
Opt Lett ; 43(7): 1519-1522, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29601019

RESUMEN

We present a coherently combined laser amplifier with 16 channels from a multicore fiber in a proof-of-principle demonstration. Filled-aperture beam splitting and combination, together with temporal phasing, is realized in a compact and low-component-count setup. Combined average power of up to 70 W with 40 ps pulses is achieved with combination efficiencies around 80%.

11.
Opt Lett ; 43(21): 5178-5181, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382961

RESUMEN

We report on the generation of a high-power frequency comb in the 2 µm wavelength regime featuring high amplitude and phase stability with unprecedented laser parameters, combining 60 W of average power with <30 fs pulse duration. The key components of the system are a mode-locked Er:fiber laser, a coherence-preserving nonlinear broadening stage, and a high-power Tm-doped fiber chirped-pulse amplifier with subsequent nonlinear self-compression of the pulses. Phase locking of the system resulted in a phase noise of less than 320 mrad measured within the 10 Hz-30 MHz band and 30 mrad in the band from 10 Hz to 1 MHz.

12.
Opt Express ; 25(13): 14892-14899, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789071

RESUMEN

We investigate the average power scaling of two diode-pumped Yb-doped fiber amplifiers emitting a diffraction-limited beam. The first fiber under investigation with a core diameter of 30 µm was able to amplify a 10 W narrow linewidth seed laser up to 2.8 kW average output power before the onset of transverse mode instabilities (TMI). A further power scaling was achieved using a second fiber with a smaller core size (23µm), which allowed for a narrow linewidth output power of 3.5 kW limited by stimulated Brillouin scattering (SBS). We mitigated SBS using a spectral broadening mechanism, which allowed us to further increase the output power to 4.3 kW only limited by the available pump power. Up to this power level, a high slope efficiency of 90% with diffraction-limited beam quality and without any sign of TMI or stimulated Raman scattering for a spectral dynamic range of higher than -80 dB was obtained.

13.
Opt Express ; 25(16): 19195-19204, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041113

RESUMEN

We report on a theoretical and experimental study of the energy transfer between an optical evanescent wave, propagating in vacuum along the planar boundary of a dielectric material, and a beam of sub-relativistic electrons. The evanescent wave is excited via total internal reflection in the dielectric by an infrared (λ = 2 µm) femtosecond laser pulse. By matching the electron propagation velocity to the phase velocity of the evanescent wave, energy modulation of the electron beam is achieved. A maximum energy gain of 800 eV is observed, corresponding to the absorption of more than 1000 photons by one electron. The maximum observed acceleration gradient is 19 ± 2 MeV/m. The striking advantage of this scheme is that a structuring of the acceleration element's surface is not required, enabling the use of materials with high laser damage thresholds that are difficult to nano-structure, such as SiC, Al2O3 or CaF2.

14.
Opt Lett ; 42(4): 747-750, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198855

RESUMEN

The combination of high-repetition-rate ultrafast thulium-doped fiber laser systems and gas-based nonlinear pulse compression in waveguides offers promising opportunities for the development of high-performance few-cycle laser sources at 2 µm wavelength. In this Letter, we report on a nonlinear pulse compression stage delivering 252 µJ, sub-50 fs-pulses at 15.4 W of average power. This performance level was enabled by actively mitigating ultrashort pulse propagation effects induced by the presence of water vapor absorptions.

15.
Opt Lett ; 42(20): 4179-4182, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028042

RESUMEN

High-average power laser sources delivering intense few-cycle pulses in wavelength regions beyond the near infrared are promising tools for driving the next generation of high-flux strong-field experiments. In this work, we report on nonlinear pulse compression to 34.4 µJ-, 2.1-cycle pulses with 1.4 GW peak power at a central wavelength of 1.82 µm and an average power of 43 W. This performance level was enabled by the combination of a high-repetition-rate ultrafast thulium-doped fiber laser system and a gas-filled antiresonant hollow-core fiber.

16.
Appl Phys B ; 123(1): 17, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32214687

RESUMEN

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

17.
Opt Express ; 24(19): 22013-27, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661936

RESUMEN

Lensless coherent diffractive imaging usually requires iterative phase-retrieval for recovering the missing phase information. Holographic techniques, such as Fourier-transform holography (FTH) or holography with extended references (HERALDO), directly provide this phase information and thus allow for a direct non-iterative reconstruction of the sample. In this paper, we analyze the effect of detector noise on the reconstruction for FTH and HERALDO with linear and rectangular references. We find that HERALDO is more sensitive to this type of noise than FTH, especially if rectangular references are employed. This excessive noise, caused by the necessary differentiation step(s) during reconstruction in case of HERALDO, additionally depends on the numerical implementation. When considering both shot-noise and detector noise, we find that FTH provides a better signal-to-noise ratio (SNR) than HERALDO if the available photon flux from the light source is low. In contrast, at high photon flux HERALDO provides better SNR and resolution than FTH. Our findings will help in designing optimum holographic imaging experiments particularly in the photon-flux-limited regime where most ultrafast experiments operate.

18.
Opt Express ; 24(8): 7879-92, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137230

RESUMEN

The average output power of Yb-doped fiber amplifier systems is currently limited by the onset of transverse mode instabilities. Besides, it has been recently shown that the transverse mode instability threshold can be significantly reduced by the presence of photodarkening in the fiber. Therefore, reducing the photodarkening level of the core material composition is the most straightforward way to increase the output average power of fiber amplifier systems but, unfortunately, this is not always easy or possible. In this paper we present guidelines to optimize the output average power of fiber amplifiers affected by transverse mode instabilities and photodarkening. The guidelines derived from the simulations do not involve changes in the composition of the active material (except for its doping concentration), but can still lead to a significant increase of the transverse mode instability threshold. The dependence of this parameter on the active ion concentration and the core conformation, among others, will be studied and discussed.

19.
Opt Express ; 24(8): 7893-904, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137231

RESUMEN

Actively stabilized, simultaneous spatial and temporal coherent beam combination is a promising power-scaling technique for ultrafast laser systems. For a temporal combination based on optical delay lines, multiple stable states of operation arise for common stabilization techniques. A time resolved Jones' calculus is applied to investigate the issue. A mitigation strategy based on a temporally gated error signal acquisition is derived and demonstrated, enabling to stabilize laser systems with arbitrary numbers of amplifier channels and optical delay lines.

20.
Opt Lett ; 41(17): 4130-3, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27607990

RESUMEN

Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA