Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 213-231, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38431282

RESUMEN

In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.


Asunto(s)
Criptocromos , Fitocromo , Plantas , Criptocromos/metabolismo , Criptocromos/genética , Fitocromo/metabolismo , Plantas/metabolismo , Plantas/efectos de la radiación , Luz , Fototransducción , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Fototropinas/metabolismo , Fototropinas/genética
2.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850650

RESUMEN

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Asunto(s)
Plantas , Factores de Transcripción , Vocabulario , Cromatina , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/genética
3.
EMBO J ; 38(18): e102962, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31432520

RESUMEN

How structurally distinct photoreceptors regulate evolutionarily diverse transcription factors to modulate common photoresponses is an intriguing question in plant biology. In this issue of The EMBO Journal, Lau et al demonstrate that COP1, the substrate receptor of E3 ubiquitin ligase CUL4COP 1- SPA s , interacts with the diverse VP motif-containing transcription factors and photoreceptors via its highly plastic WD40 domain. Light-activated photoreceptors increase their affinity to COP1 to outcompete the COP1-interacting transcription factors, allowing their accumulation and inducing photomorphogenic development of plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteína Coat de Complejo I , Péptidos , Fotorreceptores de Plantas , Ubiquitina-Proteína Ligasas
4.
Nat Immunol ; 12(11): 1078-85, 2011 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-21964607

RESUMEN

The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8(+) T cell-mediated adaptive immune responses. Aminopeptidases have been linked to the editing of peptides for MHC class I loading, but carboxy-terminal editing is thought to be due to proteasome cleavage. By analysis of wild-type mice and mice genetically deficient in or overexpressing the dipeptidase angiotensin-converting enzyme (ACE), we have now identified ACE as having a physiological role in the processing of peptides for MHC class I. ACE edited the carboxyl terminus of proteasome-produced MHC class I peptides. The lack of ACE exposed new antigens but also abrogated some self antigens. ACE had substantial effects on the surface expression of MHC class I in a haplotype-dependent manner. We propose a revised model of peptide processing for MHC class I by introducing carboxypeptidase activity into the process.


Asunto(s)
Selección Clonal Mediada por Antígenos , Antígenos de Histocompatibilidad Clase I/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfocitos T/metabolismo , Inmunidad Adaptativa , Animales , Presentación de Antígeno/genética , Autoantígenos/inmunología , Autoantígenos/metabolismo , Células Cultivadas , Selección Clonal Mediada por Antígenos/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/inmunología , Unión Proteica/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/genética , Linfocitos T/citología , Linfocitos T/inmunología , Transgenes/genética
5.
Plant Physiol ; 190(1): 459-479, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35670753

RESUMEN

Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.


Asunto(s)
Populus , Sequías , Regulación de la Expresión Génica de las Plantas , Populus/genética , Populus/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , ARN/metabolismo , Estrés Fisiológico/genética , Xilema/genética , Xilema/metabolismo
6.
J Integr Plant Biol ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902426

RESUMEN

Photoreceptor cryptochromes (CRYs) mediate blue-light regulation of plant growth and development. It has been reported that Arabidopsis CRY1and CRY2 function by physically interacting with at least 84 proteins, including transcription factors or co-factors, chromatin regulators, splicing factors, messenger RNA methyltransferases, DNA repair proteins, E3 ubiquitin ligases, protein kinases and so on. Of these 84 proteins, 47 have been reported to exhibit altered binding affinity to CRYs in response to blue light, and 41 have been shown to exhibit condensation to CRY photobodies. The blue light-regulated composition or condensation of CRY complexes results in changes of gene expression and developmental programs. In this mini-review, we analyzed recent studies of the photoregulatory mechanisms of Arabidopsis CRY complexes and proposed the dual mechanisms of action, including the "Lock-and-Key" and the "Liquid-Liquid Phase Separation (LLPS)" mechanisms. The dual CRY action mechanisms explain, at least partially, the structural diversity of CRY-interacting proteins and the functional diversity of the CRY photoreceptors.

7.
Plant J ; 107(5): 1513-1532, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181801

RESUMEN

De novo shoot organogenesis is an important biotechnological tool for fundamental studies in plant. However, it is difficult in most bamboo species, and the genetic control of this highly dynamic and complicated regeneration process remains unclear. In this study, based on an in-depth analysis at the cellular level, the shoot organogenesis from calli of Ma bamboo (Dendrocalamus latiflorus Munro) was divided into five stages. Subsequently, single-molecule long-read isoform sequencing of tissue samples pooled from all five stages was performed to generate a full-length transcript landscape. A total of 83 971 transcripts, including 73 209 high-quality full-length transcripts, were captured, which served as an annotation reference for the subsequent RNA sequencing analysis. Time-course transcriptome analysis of samples at the abovementioned five stages was conducted to investigate the global gene expression atlas showing genome-wide expression of transcripts during the course of bamboo shoot organogenesis. K-means clustering analysis and stage-specific transcript identification revealed important dynamically expressed transcription regulators that function in bamboo shoot organogenesis. The majority of abiotic stress-responsive genes altered their expression levels during this process, and further experiments demonstrated that exogenous application of moderate but not severe abiotic stress increased the shoot regeneration efficiency. In summary, our study provides an overview of the genetic flow dynamics during bamboo shoot organogenesis. Full-length cDNA sequences generated in this study can serve as a valuable resource for fundamental and applied research in bamboo in the future.


Asunto(s)
Bambusa/genética , Organogénesis de las Plantas/genética , Estrés Fisiológico , Transcriptoma , Bambusa/crecimiento & desarrollo , Bambusa/fisiología , ADN Complementario/genética , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , ARN de Planta/genética , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Mol Biol Evol ; 37(2): 327-340, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550045

RESUMEN

Universally conserved residues (UCRs) are invariable amino acids evolutionarily conserved among members of a protein family across diverse kingdoms of life. UCRs are considered important for stability and/or function of protein families, but it has not been experimentally examined systematically. Cryptochromes are photoreceptors in plants or light-independent components of the circadian clocks in mammals. We experimentally analyzed 51 UCRs of Arabidopsis cryptochrome 2 (CRY2) that are universally conserved in eukaryotic cryptochromes from Arabidopsis to human. Surprisingly, we found that UCRs required for stable protein expression of CRY2 in plants are not similarly required for stable protein expression of human hCRY1 in human cells. Moreover, 74% of the stably expressed CRY2 proteins mutated in UCRs retained wild-type-like activities for at least one photoresponses analyzed. Our finding suggests that the evolutionary mechanisms underlying conservation of UCRs or that distinguish UCRs from non-UCRs determining the same functions of individual cryptochromes remain to be investigated.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Criptocromos/genética , Criptocromos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Secuencia Conservada , Criptocromos/química , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Estabilidad Proteica
9.
Planta ; 254(3): 50, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34386845

RESUMEN

MAIN CONCLUSION: Overexpression of the leaf color (Lc) gene in Ma bamboo substantially increased the accumulation level of anthocyanin, and improved plant tolerance to cold and drought stresses, probably due to the increased antioxidant capacity. Most bamboos, including Ma bamboo (Dendrocalamus latiflorus Munro), are naturally evergreen and sensitive to cold and drought stresses, while it's nearly impossible to make improvements through conventual breeding due to their long and irregular flowering habit. Moreover, few studies have reported bamboo germplasm innovation through genetic engineering as bamboo genetic transformation remains difficult. In this study, we have upregulated anthocyanin biosynthesis in Ma bamboo, to generate non-green Ma bamboo with increased abiotic stress tolerance. By overexpressing the maize Lc gene, a bHLH transcription activator involved in the anthocyanin biosynthesis in Ma bamboo, we generated purple bamboos with increased anthocyanin levels including cyanidin-3-O-rutinoside, peonidin 3-O-rutinoside, and an unknown cyanidin pentaglycoside derivative. The expression levels of 9 anthocyanin biosynthesis genes were up-regulated. Overexpression of the Lc gene improved the plant tolerance to cold and drought stress, probably due to increased antioxidant capacity. The levels of the cold- and drought-related phytohormone jasmonic acid in the transgenic plants were also enhanced, which may also contribute to the plant stress-tolerant phenotypes. High anthocyanin accumulation level did not affect plant growth. Transcriptomic analysis showed higher expressions of genes involved in the flavonoid pathway in Lc transgenic bamboos compared with those in wild-type ones. The anthocyanin-rich bamboos generated here provide an example of ornamental and multiple agronomic trait improvements by genetic engineering in this important grass species.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Antocianinas , Respuesta al Choque por Frío , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo
10.
Plant Cell Environ ; 44(6): 1802-1815, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33665849

RESUMEN

Cryptochromes photoreceptors, CRY1 and CRY2 in Arabidopsis, mediate blue light responses in plants and metazoa. The signalling interactions underlying photomorphogenesis of cryptochromes action have been extensively studied in experiment, expecting a systematical analysis of the dynamic mechanisms of photosensory signalling network from a global view. In this study, we developed a signalling network model to quantitatively investigate the different response modes and cooperation modulations on photomorphogenesis for CRY1 and CRY2 under blue light. The model shows that the different modes of time-dependent and fluence-rate-dependent phosphorylations for CRY1 and CRY2 are originated from their different phosphorylation rates and degradation rates. Our study indicates that, due to the strong association between blue-light inhibitor of cryptochromes (BIC) and CRY2, BIC negatively modulates CRY2 phosphorylation, which was confirmed by our experiment. The experiment also validated the model prediction that the time-dependent BIC-CRY1 and the fluence-rate-dependent BIC-CRY2 are both bell-shaped under blue light. Importantly, the model proposes that the COP1-SPA abundance can strongly inhibit the phosphorylation response of CRY2, resulting in the positive regulation of CRY2 phosphorylation by CRY1 through COP1-SPA. The model also predicts that the CRY1-HY5 axis, rather than CRY2-HY5 pathway, plays a dominant role in blue-light-dependent photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/genética , Células HEK293 , Humanos , Luz , Morfogénesis , Mutación , Fosforilación , Plantas Modificadas Genéticamente , Factores de Tiempo , Ubiquitina-Proteína Ligasas/metabolismo
11.
Plant Cell Physiol ; 61(5): 882-896, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32044993

RESUMEN

Spartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used Pacific Biosciences (PacBio) full-length single-molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt gradient experiments. High-quality unigenes, transcription factors, non-coding RNA and Spartina-specific transcripts were identified. Co-expression network analysis found that protein kinase-encoding genes (SaOST1, SaCIPK10 and SaLRRs) are hub genes in the salt tolerance regulatory network. High salt stress induced the expression of transcription factors but repressed the expression of long non-coding RNAs. The Spartina transcriptome is closer to rice than Arabidopsis, and a higher proportion of transporter and transcription factor-encoding transcripts have been found in Spartina. Transcriptome analysis showed that high salt stress induced the expression of carbohydrate metabolism, especially cell-wall biosynthesis-related genes in Spartina, and repressed its expression in rice. Compared with rice, high salt stress highly induced the expression of stress response, protein modification and redox-related gene expression and greatly inhibited translation in Spartina. High salt stress also induced alternative splicing in Spartina, while differentially expressed alternative splicing events associated with photosynthesis were overrepresented in Spartina but not in rice. Finally, we built the SAPacBio website for visualizing full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes and alternative splicing events in Spartina. Overall, this study suggests that the salt tolerance mechanism in Spartina is different from rice in many aspects and is far more complex than expected.


Asunto(s)
Poaceae/genética , Poaceae/fisiología , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Transcriptoma/genética , Empalme Alternativo/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Oryza/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
12.
Bioinformatics ; 35(17): 3119-3126, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689723

RESUMEN

MOTIVATION: MicroRNA (miRNA) and alternative splicing (AS)-mediated post-transcriptional regulation has been extensively studied in most eukaryotes. However, the interplay between AS and miRNAs has not been explored in plants. To our knowledge, the overall profile of miRNA target sites in circular RNAs (circRNA) generated by alternative back splicing has never been reported previously. To address the challenge, we identified miRNA target sites located in alternatively spliced regions of the linear and circular splice isoforms using the up-to-date single-molecule real-time (SMRT) isoform sequencing (Iso-Seq) and Illumina sequencing data in eleven plant species. RESULTS: In total, we identified 399 401 and 114 574 AS events from linear and circular RNAs, respectively. Among them, there were 64 781 and 41 146 miRNA target sites located in linear and circular AS region, respectively. In addition, we found 38 913 circRNAs to be overlapping with 45 648 AS events of its own parent isoforms, suggesting circRNA regulation of AS of linear RNAs by forming R-loop with the genomic locus. Here, we present a comprehensive database of miRNA targets in alternatively spliced linear and circRNAs (ASmiR) and a web server for deposition and identification of miRNA target sites located in the alternatively spliced region of linear and circular RNAs. This database is accompanied by an easy-to-use web query interface for meaningful downstream analysis. Plant research community can submit user-defined datasets to the web service to search AS regions harboring small RNA target sites. In conclusion, this study provides an unprecedented resource to understand regulatory relationships between miRNAs and AS in both gymnosperms and angiosperms. AVAILABILITY AND IMPLEMENTATION: The readily accessible database and web-based tools are available at http://forestry.fafu.edu.cn/bioinfor/db/ASmiR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme Alternativo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs , ARN Circular , ARN de Planta , Análisis de Secuencia de ARN
13.
Yi Chuan ; 42(2): 194-211, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32102776

RESUMEN

As a coastal halophyte, Spartina alterniflora has high salt tolerance. However, the mechanism at the molecular level has not been widely studied due to the absence of a reference genome. The proteins of NAC families are plant-specific transcription factors that regulate the growth, development and stress response in plants. To identify the NAC family and explore the relationship between NAC proteins and the growth, development and stress response of Spatina alterniflora, full-length transcriptome data of Spartina alterniflora by the third generation sequencing technology was used as reference sequences in this study to blast with the NAC protein sequences from Oryza sativa, Arabidopsis thaliana and Zea mays. Finally, 62 SaNAC proteins were found in Spartina alterniflora by deep analysis on conserved domains. Then we analyzed sequence alignment, evolution, motif prediction, homology comparison, subcellular localization, tissue and abiotic stress-induced gene differential expression profile on the NAC family members in Spartina alterniflora. As a result, all SaNAC proteins were found containing a conserved NAM domain and having certain evolutionary similarity with rice; two family proteins, SaNAC9 and SaNAC49, were expressed in the nucleus; moreover, SaNAC genes were identified to have distinct expressional profiles in different tissues and stress response of Spartina alterniflora. These results indicated the SaNAC transcription factor family not only had conserved functional domains but also played important role in the regulation of growth, development and abiotic stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Poaceae/genética , Plantas Tolerantes a la Sal/genética , Factores de Transcripción/genética , Filogenia , Estrés Fisiológico
14.
Plant Cell Physiol ; 60(6): 1354-1373, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835314

RESUMEN

Circular RNAs, including circular exonic RNAs (circRNA), circular intronic RNAs (ciRNA) and exon-intron circRNAs (EIciRNAs), are a new type of noncoding RNAs. Growing shoots of moso bamboo (Phyllostachys edulis) represent an excellent model of fast growth and their circular RNAs have not been studied yet. To understand the potential regulation of circular RNAs, we systematically characterized circular RNAs from eight different developmental stages of rapidly growing shoots. Here, we identified 895 circular RNAs including a subset of mutually inclusive circRNA. These circular RNAs were generated from 759 corresponding parental coding genes involved in cellulose, hemicellulose and lignin biosynthetic process. Gene co-expression analysis revealed that hub genes, such as DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), MAINTENANCE OF METHYLATION (MOM), dicer-like 3 (DCL3) and ARGONAUTE 1 (AGO1), were significantly enriched giving rise to circular RNAs. The expression level of these circular RNAs presented correlation with its linear counterpart according to transcriptome sequencing. Further protoplast transformation experiments indicated that overexpressing circ-bHLH93 generating from transcription factor decreased its linear transcript. Finally, the expression profiles suggested that circular RNAs may have interplay with miRNAs to regulate their cognate linear mRNAs, which was further supported by overexpressing miRNA156 decreasing the transcript of circ-TRF-1 and linear transcripts of TRF-1. Taken together, the overall profile of circular RNAs provided new insight into an unexplored category of long noncoding RNA regulation in moso bamboo.


Asunto(s)
Brotes de la Planta/crecimiento & desarrollo , Poaceae/genética , ARN de Planta/genética , ARN/genética , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Brotes de la Planta/metabolismo , Poaceae/crecimiento & desarrollo , ARN Circular , Transcriptoma
15.
J Exp Bot ; 70(19): 5231-5243, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31198941

RESUMEN

Unlike animal cells, plant cells do not possess centrosomes that serve as microtubule organizing centers; how microtubule arrays are organized throughout plant morphogenesis remains poorly understood. We report here that Arabidopsis INCREASED PETAL GROWTH ANISOTROPY 1 (IPGA1), a previously uncharacterized microtubule-associated protein, regulates petal growth and shape by affecting cortical microtubule organization. Through a genetic screen, we showed that IPGA1 loss-of-function mutants displayed a phenotype of longer and narrower petals, as well as increased anisotropic cell expansion of the petal epidermis in the late phases of flower development. Map-based cloning studies revealed that IPGA1 encodes a previously uncharacterized protein that colocalizes with and directly binds to microtubules. IPGA1 plays a negative role in the organization of cortical microtubules into parallel arrays oriented perpendicular to the axis of cell elongation, with the ipga1-1 mutant displaying increased microtubule ordering in petal abaxial epidermal cells. The IPGA1 family is conserved among land plants and its homologs may have evolved to regulate microtubule organization. Taken together, our findings identify IPGA1 as a novel microtubule-associated protein and provide significant insights into IPGA1-mediated microtubule organization and petal growth anisotropy.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Flores/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Morfogénesis
16.
Genes Dev ; 25(10): 1029-34, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21511871

RESUMEN

Plant photoreceptors mediate light suppression of the E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) to affect gene expression and photomorphogenesis. However, how photoreceptors mediate light regulation of COP1 activity remains unknown. We report here that Arabidopsis blue-light receptor cryptochrome 1 (CRY1) undergoes blue-light-dependent interaction with the COP1-interacting protein SPA1 (SUPPRESSOR OF PHYTOCHROME A). We further show that the CRY1-SPA1 interaction suppresses the SPA1-COP1 interaction and COP1-dependent degradation of the transcription factor HY5. These results are consistent with a hypothesis that photoexcited CRY1 interacts with SPA1 to modulate COP1 activity and plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Ciclo Celular/metabolismo , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo
17.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623377

RESUMEN

Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.


Asunto(s)
Arabidopsis/fisiología , Flores/fisiología , Microtúbulos/genética , Microtúbulos/metabolismo , Morfogénesis , Organogénesis de las Plantas , Arabidopsis/ultraestructura , Fenotipo , Epidermis de la Planta/fisiología , Epidermis de la Planta/ultraestructura
18.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861396

RESUMEN

Moso bamboo is well-known for its rapid-growth shoots and widespread rhizomes. However, the regulatory genes of these two processes are largely unexplored. GATA transcription factors regulate many developmental processes, but their roles in moso bamboo height control and rhizome development remains unexplored. Here, thirty-one bamboo GATA factors (PeGATAs) were identified, which are evolutionarily closer to rice than Arabidopsis, and their gene expression patterns were analyzed in bamboo development and phytohormone response with bioinformatics and molecular methods. Interestingly, PeGATAs could only be classified into three groups. Phytohormone responsive cis-elements were found in PeGATA promoters and the expression profiles showed that PeGATA genes might respond to gibberellin acid and abscisic acid but not to auxin at the transcriptional level. Furthermore, PeGATA genes have a tissue-specific expression pattern in bamboo rhizomes. Interestingly, most PeGATA genes were down-regulated during the rapid-growth of bamboo shoots. In addition, over-expressing one of the PeGATA genes, PeGATA26, significantly repressed the primary root length and plant height of transgenic Arabidopsis plants, which may be achieved by promoting the gibberellin acid turnover. Overall, our results provide insight into the function of GATA transcription factors in bamboo, and into genetic resources for engineering plant height.


Asunto(s)
Factores de Transcripción GATA/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Sasa/genética , Sasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sitios de Unión , Biología Computacional/métodos , Genoma de Planta , Genómica/métodos , Filogenia , Unión Proteica , Transporte de Proteínas , Sasa/clasificación
19.
Plant J ; 91(4): 684-699, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28493303

RESUMEN

Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system.


Asunto(s)
Empalme Alternativo/genética , Poaceae/genética , Poliadenilación/genética , Rizoma/genética , Intrones/genética , Anotación de Secuencia Molecular , Poli A/genética , Análisis de Secuencia de ADN
20.
Plant J ; 92(3): 426-436, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28833729

RESUMEN

Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Retroalimentación Fisiológica/efectos de la radiación , Fotorreceptores de Plantas/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes Reporteros , Luz , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Fitocromo/metabolismo , Fitocromo/efectos de la radiación , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA