Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem J ; 478(12): 2321-2337, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34076705

RESUMEN

LMBD1 was previously demonstrated to regulate the endocytosis of insulin receptor on the cell surface and to mediate the export of cobalamin from the lysosomes to the cytosol, but little is known about its function in mitosis. In this study, interactome analysis data indicate that LMBD1 is involved in cytoskeleton regulation. Both immunoprecipitation and GST pulldown assays demonstrated the association of LMBD1 with tubulin. Immunofluorescence staining also showed the colocalization of LMBD1 with microtubule in both interphase and mitotic cells. LMBD1 specifically accelerates microtubule assembly dynamics in vitro and antagonizes the microtubule-disruptive effect of vinblastine. In addition, LMBRD1-knockdown impairs mitotic spindle formation, inhibits tubulin polymerization, and diminishes the mitosis-associated tubulin acetylation. The reduced acetylation can be reversed by ectopic expression of LMBD1 protein. These results suggest that LMBD1 protein stabilizes microtubule intermediates. Furthermore, embryonic fibroblasts derived from Lmbrd1 heterozygous knockout mice showed abnormality in microtubule formation, mitosis, and cell growth. Taken together, LMBD1 plays a pivotal role in regulating microtubule assembly that is essential for the process of cell mitosis.


Asunto(s)
Citoesqueleto/fisiología , Microtúbulos/fisiología , Mitosis , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/fisiología , Tubulina (Proteína)/química , Animales , Ciclo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte Nucleocitoplasmático/genética , Dominios y Motivos de Interacción de Proteínas , Huso Acromático/fisiología
2.
Proc Natl Acad Sci U S A ; 112(36): 11229-34, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305948

RESUMEN

Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az1) and antizyme inhibitor (AzIN). Az1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome. In contrast, AzIN positively regulates polyamine levels by competing with ODC for Az1 binding. The structural basis of the Az1-mediated regulation of polyamine homeostasis has remained elusive. Here we report crystal structures of human Az1 complexed with either ODC or AzIN. Structural analysis revealed that Az1 sterically blocks ODC homodimerization. Moreover, Az1 binding triggers ODC degradation by inducing the exposure of a cryptic proteasome-interacting surface of ODC, which illustrates how a substrate protein may be primed upon association with Az1 for ubiquitin-independent proteasome recognition. Dynamic and functional analyses further indicated that the Az1-induced binding and degradation of ODC by proteasome can be decoupled, with the intrinsically disordered C-terminal tail fragment of ODC being required only for degradation but not binding. Finally, the AzIN-Az1 structure suggests how AzIN may effectively compete with ODC for Az1 to restore polyamine production. Taken together, our findings offer structural insights into the Az-mediated regulation of polyamine homeostasis and proteasomal degradation.


Asunto(s)
Proteínas Portadoras/química , Homeostasis , Ornitina Descarboxilasa/química , Poliaminas/química , Proteínas/química , Secuencia de Aminoácidos , Biocatálisis , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteolisis , Homología de Secuencia de Aminoácido
3.
J Formos Med Assoc ; 117(6): 471-479, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28549591

RESUMEN

BACKGROUND/PURPOSE: LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. METHODS: To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. RESULTS: By studying the heterozygous knockout of Lmbrd1 (Lmbrd1+/-), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1+/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B12 cblF cobalamin transport defect. Lmbrd1+/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1+/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. CONCLUSION: The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice.


Asunto(s)
Cardiomegalia/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Receptor de Insulina/metabolismo , Alelos , Animales , Cardiomegalia/diagnóstico por imagen , Modelos Animales de Enfermedad , Ecocardiografía , Masculino , Ratones , Ratones Noqueados , Tomografía de Emisión de Positrones , Transducción de Señal
4.
J Biol Chem ; 288(45): 32424-32432, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24078630

RESUMEN

Energy homeostasis is crucial for maintaining normally functioning cells; disturbances in this balance often cause various diseases. The limb region 1 (LMBR1) domain containing 1 gene (lmbrd1) encodes the LMBD1 protein that possesses 9 putative transmembrane domains. LMBD1 has been suggested to be involved in the lysosome in aiding the export of cobalamin. In this study, we determined that LMBD1 plays a regulatory role in the plasma membrane. A micro-positron emission tomography analysis showed that a single-allele knock-out of lmbrd1 increased the (18)F-fluorodeoxyglucose uptake in murine hearts. In addition, the knockdown of lmbrd1 resulted in an up-regulated signaling of the insulin receptor (IR) and its downstream signaling molecule, Akt. Confocal and live total internal reflection fluorescence microscopy showed that LMBD1 co-localized and co-internalized with clathrin and the IR, but not with the transferrin receptor. The results of the mutation analysis and phenotypic rescue experiments indicate that LMBD1 interacts with adaptor protein-2 and is involved in the unique clathrin-mediated endocytosis of the IR. LMBD1 selectively interacts with the IR. The knockdown of lmbrd1 attenuated IR endocytosis, resulting in the perturbation of the IR recycling pathway and consequential enhancement of the IR signaling cascade. In summary, LMBD1 plays an imperative role in mediating and regulating the endocytosis of the IR.


Asunto(s)
Endocitosis/fisiología , Miocardio/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Línea Celular , Clatrina/genética , Clatrina/metabolismo , Fluorodesoxiglucosa F18/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Mutantes , Proteínas de Transporte Nucleocitoplasmático/genética , Tomografía de Emisión de Positrones , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Radiofármacos/farmacología , Ratas , Receptor de Insulina/genética
5.
Biomed Pharmacother ; 153: 113351, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35785707

RESUMEN

Trichodermin (TCD), a trichothecene first isolated from marine Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, the potential effects of TCD on human oral squamous cell carcinoma (OSCC) cells and the underlying molecular mechanisms remain unknown. In this study, the exposure of OSCC cells (Ca922 and HSC-3 cells) to TCD suppressed cell proliferation assessed using MTT assays and colony formation assays. TCD inhibited the migration and invasion of OSCC cells (Ca922 and HSC-3 cells) through the downregulation of matrix metalloproteinase 9. After treatment of OSCC cells with TCD, the G2/M phase was arrested, caspase-related apoptosis (cleaved caspase-3 and PARP expression) was induced, and the protein level of x-linked inhibitor of apoptosis was reduced. Meanwhile, the TCD-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK. Furthermore, TCD diminished mitochondrial membrane potential, mitochondrial oxidative phosphorylation and glycolytic function in OSCC cells. In addition, TCD decreased the levels of histone deacetylase 2 (HDAC-2) and downstream signaling proteins, including phosphorylated STAT3 and NF-κB. Finally, TCD significantly suppressed tumor growth in a zebrafish OSCC xenotransplantation model. Overall, this evidence demonstrates that TCD is a novel promising strategy for the treatment of OSCCs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Animales , Apoptosis , Carcinoma de Células Escamosas/patología , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Histona Desacetilasa 2 , Humanos , Mitocondrias/metabolismo , Neoplasias de la Boca/patología , Tricodermina/farmacología , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA