Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(3): 4498-4510, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297650

RESUMEN

A phase retrieval method based on deep learning with bandpass filtering in holographic data storage is proposed. The relationship between the known encoded data pages and their near-field diffraction intensity patterns is established by an end-to-end convolutional neural network, which is used to predict the unknown phase data page. We found the training efficiency of phase retrieval by deep learning is mainly determined by the edge details of the adjacent phase codes, which are the high-frequency components of the phase code. Therefore, we can attenuate the low-frequency components to reduce material consumption. Besides, we also filter out the high-order frequency over twice Nyquist size, which is redundant information with poor anti-noise performance. Compared with full-frequency recording, the consumption of storage media is reduced by 2.94 times, thus improving the storage density.

2.
Opt Express ; 29(5): 6726-6736, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726187

RESUMEN

A dynamic sampling iterative phase retrieval method, which dynamically samples the Fourier intensity distribution of the reconstruction beam captured by the detector, is proposed to shorten the iterative number and decrease the phase error rate of phase retrieval in the phase-modulated holographic data storage. By the dynamic sampling method, that keeping relatively low frequency component of Fourier intensity spectrum at the beginning of iteration and gradually releasing more high frequency component at the subsequent iterations, we shortened the iterative number by 2 times and decreased the phase error rate to some extent because our method provided a better convergent path to the phase retrieval. We also believe the thought of our method can be used in more image retrieval fields.

3.
J Synchrotron Radiat ; 26(Pt 5): 1782-1789, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490170

RESUMEN

A fabrication method comprising near-field holography (NFH) with an electron beam lithography (EBL)-written phase mask was developed to fabricate soft X-ray varied-line-spacing gratings (VLSGs). An EBL-written phase mask with an area of 52 mm × 30 mm and a central line density greater than 3000 lines mm-1 was used. The introduction of the EBL-written phase mask substantially simplified the NFH optics for pattern transfer. The characterization of the groove density distribution and diffraction efficiency of the fabricated VLSGs indicates that the EBL-NFH method is feasible and promising for achieving high-accuracy groove density distributions with corresponding image properties. Vertical stray light is suppressed in the soft X-ray spectral range.

4.
Opt Lett ; 43(4): 811-814, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444000

RESUMEN

Near-field holography (NFH) combined with electron beam lithography (EBL)-written phase masks is a promising method for the rapid realization of diffraction gratings with high resolution and high accuracy in line density distribution. We demonstrate a dynamic exposure method in which the grating substrate is shifted during pattern transfer. This reduces the effects of stitching errors, resulting in the decreased intensity of the optical stray light (i.e., Rowland ghosts). We demonstrate the intensity suppression of ghosts by 60%. This illustrates the potential for dynamic NFH to suppress undesirable periodic patterns from phase masks and alleviate the stitching errors induced by EBL.

5.
Sci Rep ; 13(1): 18912, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919360

RESUMEN

Phase retrieval in holographic data storage by expanded spectrum combined with dynamic sampling method is proposed, which serves to both reduce media consumption and to shorten the iterative number of phase code retrieval. Generally, high-fidelity phase retrieval requires twice Nyquist frequency in phase-modulated holographic data storage. To increase storage density, we only recorded and captured the signal with Nyquist size and used the frequency expanded method to realize high-fidelity phase retrieval. In the decoding process, the iterative Fourier transform algorithm is used to retrieve the phase information of the reconstructed beam. The expanded spectrum is dynamically sampled, which can provide a faster convergence path for the phase retrieval. We aimed to demonstrate the possibility of integrating various methods on the Fourier domain and providing a potential way to improve the performance of holographic data storage systems. The simulation and experimental results proved the combination of processing methods in frequency spectrum was benefit.

6.
Front Optoelectron ; 14(4): 529-539, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36637766

RESUMEN

Embedded data are used to retrieve phases quicker with high accuracy in phase-modulated holographic data storage (HDS). We propose a method to design an embedded data distribution using iterations to enhance the intensity of the high-frequency signal in the Fourier spectrum. The proposed method increases the antinoise performance and signal-to-noise ratio (SNR) of the Fourier spectrum distribution, realizing a more efficient phase retrieval. Experiments indicate that the bit error rate (BER) of this method can be reduced by a factor of one after 10 iterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA