Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Environ Manage ; 347: 119059, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769469

RESUMEN

Global ornamental horticulture is a major pathway for plant invasions, while urban parks are key areas for introducing non-native ornamental plants. To react appropriately to the challenges (e.g., biological invasion issues) and opportunities (e.g., urban ecosystem services) of herbaceous ornamentals in urban parks, we conducted a comprehensive invasive risk assessment in 363 urban parks in Chongqing, a subtropical city in China. The results found more than 1/3 of the 119 non-native species recorded in urban parks had a high invasion risk, and more than five species had potential invasion risk in 96.29% of the study area, indicating herbaceous ornamentals in urban parks are potentially a pool of invasive species that deserves attention. Moreover, humans have chosen herbaceous ornamentals with more aesthetic characteristics in urban parks, where exotic species were more prominent than native species in floral traits, such as more conspicuous flowers and longer flowering periods. The findings can inform urban plant management, provide an integrated approach to assessing herbaceous ornamentals' invasion risk, and offer insights into understanding the filtering effects of human aesthetic preferences.


Asunto(s)
Ecosistema , Parques Recreativos , Humanos , Plantas , Especies Introducidas , Reproducción
2.
J Environ Manage ; 317: 115445, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751255

RESUMEN

Spontaneous urban plants (SUPs) constitute an important component of urban vegetation, but they have received less attention in urban biodiversity and ecological research, especially at the regional scale. We comprehensively reviewed the occurrence records of SUPs in 59 major cities across China's geographical regions. We systematically analyzed floristic composition profiles and diversity patterns of SUPs at the regional scale and explored their influencing factors. The study identified 1211 SUP species through an extensive search of existing field research studies and fieldwork. The species composition pattern of SUPs, displaying a spatial association with climatic zones, was mainly affected by climatic factors and also anthropogenic factors. At different geographic scales, the life-form characteristics revealed some patterns, with more diverse perennials at the regional scale. The abundance of SUPs and the high proportion of native species suggested that limited urban habitats can still contribute to the enrichment and accumulation of urban biodiversity. However, in the context of globalization, continual species exchanges between neighboring regions at different scales may significantly exacerbate urban-biota homogenization. In conclusion, our study provided a regional-scale case of a synoptic SUP profile. The results furnished a scientific basis for understanding the general patterns of SUPs. The findings could inform sustainable solutions for urban ecological planning and management of spontaneous nature in cities.


Asunto(s)
Biodiversidad , Plantas , Biota , China , Ciudades , Ecosistema
3.
New Phytol ; 231(4): 1353-1358, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008201

RESUMEN

Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e. the phyllosphere community) may help us to better understand HFA. We investigated the occurrence of HFA in the presence vs absence of phyllosphere communities and found that HFA effects were smaller when phyllosphere communities were removed. We propose that priority effects and interactions between phyllosphere and soil organisms can help explain the positive effects of the phyllosphere at home, and suggest a path forward for further investigation.


Asunto(s)
Microbiota , Suelo , Ecosistema , Hojas de la Planta , Plantas , Microbiología del Suelo
4.
J Environ Manage ; 293: 112869, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34044236

RESUMEN

Urban ecosystems feature intense anthropogenic activities and environmental stressors that filter species with varying life-history traits. The traits therefore provide an essential aspect to understanding how species respond to urban environments. We conducted this study in Chongqing, a mountainous city in southwestern China, and tested the hypothesis that the velocity of urban growth can alter functional compositions of urban plant communities through selection on species' taxonomic distributions and functional traits. We found that for most traits, their values spanned a wide range across the 70 spontaneous species in this study, and seed size and leaf element composition played a key role in contributing to the functional differentiation among species. At the same time, urban growth intensity was negatively correlated with leaf N concentration, the N:P ratio, and specific leaf area (SLA), and positively correlated with the leaf C:N ratio. This suggests that species in urban centers are associated with an acquisitive nutrient-use strategy and may gain strong competitive strategies to be favored by greater selective pressure in those long-term urban centers. Lastly, we show that urbanization as a strong filter tends to reduce the chance of species with unique traits for the spontaneous plant communities. Our study offers insights into mechanisms through which spontaneous plant communities are filtered by urbanization with a special focus on the ecological consequences of the velocity of urban growth.


Asunto(s)
Biodiversidad , Ecosistema , China , Ciudades , Hojas de la Planta , Plantas
5.
Proc Biol Sci ; 287(1934): 20201268, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32873207

RESUMEN

Microplastics are recognized as an emerging contaminant worldwide. Although microplastics have been shown to strongly affect organisms in aquatic environments, less is known about whether and how microplastics can affect different taxa within a soil community, and it is unclear whether these effects can cascade through soil food webs. By conducting a microplastic manipulation experiment, i.e. adding low-density polyethylene fragments in the field, we found that microplastic addition significantly affected the composition and abundance of microarthropod and nematode communities. Contrary to soil fauna, we found only small effects of microplastics on the biomass and structure of soil microbial communities. Nevertheless, structural equation modelling revealed that the effects of microplastics strongly cascade through the soil food webs, leading to the modification of microbial functioning with further potential consequences on soil carbon and nutrient cycling. Our results highlight that taking into account the effects of microplastics at different trophic levels is important to elucidate the mechanisms underlying the ecological impacts of microplastic pollution on soil functioning.


Asunto(s)
Microbiota , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Cadena Alimentaria , Suelo
6.
Ann Bot ; 125(1): 145-155, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31633171

RESUMEN

BACKGROUND AND AIMS: The plant economics spectrum theory provides a useful framework to examine plant strategies by integrating the co-ordination of plant functional traits along a resource acquisition-conservation trade-off axis. Empirical evidence for this theory has been widely observed for seed plants (Spermatophyta). However, whether this theory can be applied to ferns (Pteridophyta), a ubiquitous and ancient group of vascular plants, has rarely been evaluated so far. METHODS: We measured 11 pairs of plant functional traits on leaves and fine roots (diameter <2 mm) on 12 coexisting fern species in a sub-tropical forest. Litterbags of leaves and roots were placed in situ and exposed for 586 d to measure decomposition rates. The variation of traits across species and the co-ordination among traits within and between plant organs were analysed. Finally, the influence of the traits on decomposition rates were explored. KEY RESULTS: Most leaf and root traits displayed high cross-species variation, and were aligned along a major resource acquisition-conservation trade-off axis. Many fern traits co-varied between leaves and fine roots, suggesting co-ordinated responses between above- and below-ground organs. Decomposition rates of leaves were significantly higher than those of fine roots, but they were significantly and positively correlated. Finally, our results highlight that the decomposition of both leaves and roots was relatively well predicted by the leaf and root economics spectra. CONCLUSIONS: Our results support the existence of an acquisition-conservation trade-off axis within ferns and indicate that traits have important 'afterlife' effects on fern litter decomposition. We conclude that the plant economics spectrum theory that is commonly observed across seed plants can be applied to ferns species, thereby extending the generality of this theory to this ancient plant lineage in our study site. Our study further suggests that the evolutionary and ecological basis for the relationships among key economics traits appears to be similar between ferns and seed plants. Future studies involving larger data sets will be required to confirm these findings across different biomes at larger spatial scales.


Asunto(s)
Helechos , Ecosistema , Bosques , Hojas de la Planta , Semillas
7.
Ecology ; 97(9): 2396-2405, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27859093

RESUMEN

Forging strong links between traits and performance is essential for understanding and predicting community assembly and dynamics. Functional trait analyses of trees that have correlated single-trait values with measures of performance such as growth and mortality have generally found weak relationships. A reason for these weak relationships is the failure to use individual-level trait data while simultaneously putting that data into the context of the abiotic setting, neighborhood composition, and the remaining axes constituting the overall phenotype. Here, utilizing detailed growth and trait data for 59 species of trees in a subtropical forest, we demonstrate that the individual-level functional trait values are strongly related to individual growth rates, and that the strength of these relationships critically depends on the context of that individual. We argue that our understanding of trait-performance relationships can be greatly improved with individual-level data so long as that data is put into the proper context.


Asunto(s)
Bosques , Fenotipo , Árboles/fisiología , Clima Tropical
9.
Ying Yong Sheng Tai Xue Bao ; 35(2): 501-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523108

RESUMEN

To explore the mixing effect of litter decomposition and the role of detritivores, we conducted a laboratory-based microcosm experiment to study the influence of detritivores on litter mixture decomposition by using two litter species with contrasting quality, i.e., Cinnamomum camphora and Michelia × alba, and a detritivore (isopoda). After 100 days incubation, the decomposition rate of litter mixture was 52.1%, slower than that of M. alba (62.6%) and significantly faster than that of C. camphora (33.6%). The addition of isopods significantly increased litter decomposition rate, with C. camphora, M. alba, and the mixture increased by 14.4%, 20.1% and 22.1%, respectively. There was no significant mixing effect without isopods. Adding isopods significantly promoted the mixing effect of litter decomposition, with a value of the litter mixture decomposition effect of 8.6%. The detritivores increased litter decomposition rate and mixing effect through increasing consumption of litter with better quality.


Asunto(s)
Cinnamomum camphora , Ecosistema , Hojas de la Planta
10.
Nat Plants ; 9(6): 898-907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169855

RESUMEN

Old trees have many ecological and socio-cultural values. However, knowledge of the factors influencing their long-term persistence in human-dominated landscapes is limited. Here, using an extensive database (nearly 1.8 million individual old trees belonging to 1,580 species) from China, we identified which species were most likely to persist as old trees in human-dominated landscapes and where they were most likely to occur. We found that species with greater potential height, smaller leaf size and diverse human utilization attributes had the highest probability of long-term persistence. The persistence probabilities of human-associated species (taxa with diverse human utilization attributes) were relatively high in intensively cultivated areas. Conversely, the persistence probabilities of spontaneous species (taxa with no human utilization attributes and which are not cultivated) were relatively high in mountainous areas or regions inhabited by ethnic minorities. The distinctly different geographic patterns of persistence probabilities of the two groups of species were related to their dissimilar responses to heterogeneous human activities and site conditions. A small number of human-associated species dominated the current cohort of old trees, while most spontaneous species were rare and endemic. Our study revealed the potential impacts of human activities on the long-term persistence of trees and the associated shifts in species composition in human-dominated landscapes.


Asunto(s)
Ecosistema , Mariposas Nocturnas , Animales , Humanos , Bases de Datos Factuales , China , Hojas de la Planta
11.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2397-2404, 2022 Sep.
Artículo en Zh | MEDLINE | ID: mdl-36131655

RESUMEN

Soil fungi are important components of belowground biodiversity and play important roles in soil carbon and nutrient cycling. We investigated fungal communities in the top soil (0-10 cm) of 22 Pinus massoniana forests in the Three Gorges Reservoir Region using high-throughput sequencing technique. We found that Ascomycota and Basidiomycota were the dominant fungi phyla, and Eurotiales, Russulales, and Tremellales were the most abundant fungi orders. The dominant functional groups in P. massoniana forests were saprophytic fungi, ectomycorrhizal fungi, and ericoid mycorrhizal fungi. Results of redundancy analysis showed that environmental variables but not spatial variables were the main drivers of soil fungal community structure across the 22 P. massoniana forests, which suggested that habitat filtering rather than dispersal limitation shaped soil fungal community structure. Aboveground biomass, soil conductivity, available phosphorus, soil bulk density, carbon to nitrogen ratio, nitrate concentration, and proportion of slit were the main factors explaining the variation in soil fungal community structure. It should be noted that the key factors influencing different fungal functional groups differed across forests.


Asunto(s)
Basidiomycota , Micobioma , Micorrizas , Pinus , Carbono , Bosques , Hongos , Nitratos , Nitrógeno , Fósforo , Suelo/química , Microbiología del Suelo
12.
Sci Total Environ ; 754: 142133, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916494

RESUMEN

While ecotoxicological impacts of microplastics on aquatic organisms have started to be investigated recently, impacts on ecosystem functions mediated by benthic biota remain largely unknown. We investigated the effect of microplastics on nitrogen removal in freshwater sediments where microorganisms and benthic invertebrates (i.e., chironomid larvae) co-existed. Using microcosm experiments, sediments with and without invertebrate chironomid larvae were exposed to microplastics (polyethylene) at concentrations of 0, 0.1, and 1 wt%. After 28 days of exposure, the addition of microplastics or chironomid larvae promoted the growth of denitrifying and anammox bacteria, leading to increased total nitrogen removal, in both cases. However, in microcosms with chironomid larvae and microplastics co-existing, nitrogen removal was less than the sum of their individual effects, especially at microplastics concentration of 1 wt%, indicating an adverse effect on microbial nitrogen removal mediated by macroinvertebrates. This study reveals that the increasing concentration of microplastics entangled the nitrogen cycling mediated by benthic invertebrates in freshwater ecosystems. These findings highlight the pursuit of a comprehensive understanding of the impacts of microplastics on the functioning in freshwater ecosystems.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Animales , Desnitrificación , Invertebrados , Microplásticos , Nitrógeno , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
Ecol Evol ; 10(17): 9257-9270, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953059

RESUMEN

Litter decomposition, a fundamental process of nutrient cycling and energy flow in freshwater ecosystems, is driven by a diverse array of decomposers. As an important component of the heterotrophic food web, meiofauna can provide a trophic link between leaf-associated microbes (i.e., bacteria and fungi)/plant detritus and macroinvertebrates, though their contribution to litter decomposition is not well understood. To investigate the role of different decomposer communities in litter decomposition, especially meiofauna, we compared the litter decomposition of three leaf species with different lignin to nitrogen ratios in litter bags with different mesh sizes (0.05, 0.25, and 2 mm) in a forested stream, in China for 78 days. The meiofauna significantly enhanced the decomposition of leaves of high-and medium- quality, while decreasing (negative effect) or increasing (positive effect) the fungal biomass and diversity. Macrofauna and meiofauna together contributed to the decomposition of low-quality leaf species. The presence of meiofauna and macrofauna triggered different aspects of the microbial community, with their effects on litter decomposition varying as a function of leaf quality. This study reveals that the meiofauna increased the trophic complexity and modulated their interactions with microbes, highlighting the important yet underestimated role of meiofauna in detritus-based ecosystems.

14.
Ecol Evol ; 10(19): 10657-10671, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072287

RESUMEN

Declining forests usually face uncertain regeneration dynamics and recovery trajectories, which are challenging to forest management. In this study, we investigated the decline pattern of Castanopsis fargesii and examined the effects on conspecific seedling regeneration. We found that 61.45% of adult individuals were in decline and the smaller DBH size classes of trees (10-40 cm) had a greater probability of decline. Most of the intermediate decline (94.52%) and nondecline individuals (95.23%) did not worsen, and the crowns of 21.91% of the intermediate decline trees were recovered during 2013-2018. Adult tree decline had a negative effect on seed production (mean mature seed density of nondecline, intermediate decline, and high decline individuals was 167.3, 63.3, and 2.1 seeds/m2, respectively), but no effect on key seed traits. The seed survival rate of declining trees was greater than that of nondeclining trees at both the seed production and seed dispersal stages. The seed to seedling transition rates in canopy gaps, decline habitats, and nondecline habitats were 7.94%, 9.47%, and 109.24%, respectively. The survival rate and height growth of newly germinated seedlings were positively correlated with the light condition, which was notably accelerated in the canopy gaps. Taken together, these results indicate that the reduction in seed production of some adult trees had a weakly negative effect on new seedling recruitment, while the improved environmental condition after the decline significantly enhanced the survival and growth of both advanced and new germinated seedlings. Looking at the overall life history, the short-term defoliation and mortality of some C. fargesii adult trees can be regarded as a natural forest disturbance that favors conspecific seedling regeneration. High-intensity management measures would be unnecessary in cases of an emerging intermediate decline in this forest.

15.
Sci Total Environ ; 654: 684-693, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448659

RESUMEN

Tropical and subtropical forest ecosystems play an important role in the global carbon regulation. Despite increasing evidence for effects of biodiversity (species diversity, functional diversity and functional dominance), stand structural attributes, stand age and environmental conditions (climate and topography) on tree carbon storage, the relative importance of these drivers at large scale is poorly understood. It is also still unclear whether biodiversity effects on tree carbon storage work through niche complementarity (i.e. increased tree carbon storage due to interspecific resource partitioning) or through the mass-ratio effect (tree carbon storage regulated by dominant traits within communities). Here we analyze tree carbon storage and its drivers using data of 480 plots sampled across subtropical forests in China. We use multiple regression models to test the relative effects of biodiversity, stand structural attributes, stand age and environmental conditions on tree carbon storage, and use a partial least squares path model to test how these variables directly and/or indirectly affect tree carbon storage. Our results show that tree carbon storage is most strongly affected by stand age, followed by climate, biodiversity and stand structural attributes. Stand age and climate had both direct and indirect (through species diversity, functional dominance and stand structural attributes) effects. We find that tree carbon storage correlates with both species diversity and functional dominance after stand age and environmental drivers are accounted for. Our results suggest that niche complementarity and the mass-ratio effect, not necessarily mutually exclusive, both play a role in maintaining ecosystem functioning. Our results further indicate that biodiversity conservation might be an effective way for enhancing tree carbon storage in natural, species-rich forest ecosystems.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Bosques , Árboles/metabolismo , Biodiversidad , Biomasa , China , Análisis Multivariante
16.
Environ Sci Pollut Res Int ; 23(15): 15616-26, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27130340

RESUMEN

Long-term interannual (1991-2013) and monthly (1999-2013) data were analyzed to elucidate the effects of meteorological factors and nutrient levels on phytoplankton biomass in the cyanobacteria-dominated Waihai basin of Lake Dianchi. The interannual ln(chl. a) exhibited positive correlations with the mean air temperature, mean minimum air temperature, and mean maximum air temperature; in addition, a positive relationship between Δln(chl. a) and ΔTP was observed throughout the period. Additionally, ln(chl. a) exhibited a positive correlation with the TP concentration, negative correlations with the sunshine hours and wind speed during the dry season, and positive correlations with the TN and TP concentrations during the rainy season. Furthermore, TP was the most influential factor affecting cyanobacterial bloom dynamics throughout the entire period and during the dry season, and TN and TP were the most important factors during the rainy season, as determined by relative importance analysis. The results of this study based on interannual analysis demonstrated that both meteorological factors and nutrient levels have important roles in controlling cyanobacterial bloom dynamics. The relative importance of these factors may change according to precipitation patterns. Thus, climate change regulation and eutrophication management should be considered in strategies for bloom control. Decreasing the TP load should be prioritized throughout the entire period and during the dry season, and decreasing the TN and TP loads should be considered initially during the rainy season. In addition, further studies of more frequent and complete data acquired over a longer period of time should be conducted in the future.


Asunto(s)
Cambio Climático , Cianobacterias , Fitoplancton , Biomasa , China , Lagos , Lluvia , Estaciones del Año , Viento
17.
PLoS One ; 8(10): e77007, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24116197

RESUMEN

Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.


Asunto(s)
Biomasa , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , China , Funciones de Verosimilitud , Modelos Lineales , Malasia , Modelos Biológicos , Raíces de Plantas/anatomía & histología , Análisis de Regresión , Árboles/anatomía & histología , Clima Tropical
18.
PLoS One ; 7(10): e48244, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118961

RESUMEN

The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha(-1) (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha(-1) (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha(-1) (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.


Asunto(s)
Biomasa , Árboles , Algoritmos , Biodiversidad , China , Conservación de los Recursos Naturales , Geografía , Modelos Biológicos , Myrica , Pinus , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA