Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172565

RESUMEN

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Quirópteros , Inflamasomas , Ribonucleoproteínas , Virosis , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Quirópteros/inmunología , COVID-19 , Inflamasomas/inmunología , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Virosis/inmunología , Fenómenos Fisiológicos de los Virus
2.
Nat Immunol ; 23(11): 1577-1587, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271146

RESUMEN

Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.


Asunto(s)
Dermatitis Atópica , Interleucina-27 , Psoriasis , Ratones , Animales , Interleucina-27/metabolismo , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Queratinocitos/metabolismo , Piel/patología , Psoriasis/genética , Psoriasis/patología , Inflamación/metabolismo
3.
Immunity ; 55(11): 2187-2205.e5, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351376

RESUMEN

Bats are reservoir hosts of many zoonotic viruses with pandemic potential. We utilized single-cell transcriptome sequencing (scRNA-seq) to analyze the immune response in bat lungs upon in vivo infection with a double-stranded RNA virus, Pteropine orthoreovirus PRV3M. Bat neutrophils were distinguished by high basal IDO1 expression. NK cells and T cells were the most abundant immune cells in lung tissue. Three distinct CD8+ effector T cell populations could be delineated by differential expression of KLRB1, GFRA2, and DPP4. Select NK and T clusters increased expression of genes involved in T cell activation and effector function early after viral infection. Alveolar macrophages and classical monocytes drove antiviral interferon signaling. Infection expanded a CSF1R+ population expressing collagen-like genes, which became the predominant myeloid cell type post-infection. This work uncovers features relevant to viral disease tolerance in bats, lays a foundation for future experimental work, and serves as a resource for comparative immunology studies.


Asunto(s)
Quirópteros , Virosis , Animales , Quirópteros/genética , Néctar de las Plantas , Transcriptoma , Análisis de la Célula Individual , Perfilación de la Expresión Génica
4.
Nature ; 589(7842): 363-370, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473223

RESUMEN

There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.


Asunto(s)
Quirópteros/inmunología , Quirópteros/virología , Reservorios de Enfermedades/veterinaria , Zoonosis Virales/inmunología , Zoonosis Virales/transmisión , Animales , Enfermedades Asintomáticas , Reservorios de Enfermedades/virología , Evolución Molecular , Humanos , Tolerancia Inmunológica , Zoonosis Virales/virología
5.
Nature ; 584(7821): 457-462, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32668444

RESUMEN

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Linfocitos T/inmunología , Betacoronavirus/química , COVID-19 , Estudios de Casos y Controles , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Reacciones Cruzadas/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/virología , SARS-CoV-2
6.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38129133

RESUMEN

Neuroimaging studies suggest cross-sensory visual influences in human auditory cortices (ACs). Whether these influences reflect active visual processing in human ACs, which drives neuronal firing and concurrent broadband high-frequency activity (BHFA; >70 Hz), or whether they merely modulate sound processing is still debatable. Here, we presented auditory, visual, and audiovisual stimuli to 16 participants (7 women, 9 men) with stereo-EEG depth electrodes implanted near ACs for presurgical monitoring. Anatomically normalized group analyses were facilitated by inverse modeling of intracranial source currents. Analyses of intracranial event-related potentials (iERPs) suggested cross-sensory responses to visual stimuli in ACs, which lagged the earliest auditory responses by several tens of milliseconds. Visual stimuli also modulated the phase of intrinsic low-frequency oscillations and triggered 15-30 Hz event-related desynchronization in ACs. However, BHFA, a putative correlate of neuronal firing, was not significantly increased in ACs after visual stimuli, not even when they coincided with auditory stimuli. Intracranial recordings demonstrate cross-sensory modulations, but no indication of active visual processing in human ACs.


Asunto(s)
Corteza Auditiva , Masculino , Humanos , Femenino , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Percepción Visual/fisiología , Percepción Auditiva/fisiología , Estimulación Luminosa
7.
N Engl J Med ; 385(15): 1401-1406, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34407341

RESUMEN

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern pose a challenge to the effectiveness of current vaccines. A vaccine that could prevent infection caused by known and future variants of concern as well as infection with pre-emergent sarbecoviruses (i.e., those with potential to cause disease in humans in the future) would be ideal. Here we provide data showing that potent cross-clade pan-sarbecovirus neutralizing antibodies are induced in survivors of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) infection who have been immunized with the BNT162b2 messenger RNA (mRNA) vaccine. The antibodies are high-level and broad-spectrum, capable of neutralizing not only known variants of concern but also sarbecoviruses that have been identified in bats and pangolins and that have the potential to cause human infection. These findings show the feasibility of a pan-sarbecovirus vaccine strategy. (Funded by the Singapore National Research Foundation and National Medical Research Council.).


Asunto(s)
Anticuerpos Antivirales/sangre , Anticuerpos ampliamente neutralizantes/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Linfocitos B , Vacuna BNT162 , Humanos , Inmunogenicidad Vacunal , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , Sobrevivientes
8.
Nature ; 556(7700): 255-258, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618817

RESUMEN

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Asunto(s)
Alphacoronavirus/aislamiento & purificación , Alphacoronavirus/patogenicidad , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Diarrea/veterinaria , Porcinos/virología , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Diarrea/patología , Diarrea/virología , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Genoma Viral/genética , Humanos , Yeyuno/patología , Yeyuno/virología , Filogenia , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/veterinaria , Síndrome Respiratorio Agudo Grave/virología , Análisis Espacio-Temporal , Zoonosis/epidemiología , Zoonosis/transmisión , Zoonosis/virología
9.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544865

RESUMEN

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, Pteropus alecto. We used the complementary RNAi and CRISPR libraries to interrogate P. alecto cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.


Asunto(s)
Aminohidrolasas/genética , COVID-19/genética , Formiato-Tetrahidrofolato Ligasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Complejos Multienzimáticos/genética , Pandemias , Aminohidrolasas/antagonistas & inhibidores , Animales , Antivirales/uso terapéutico , COVID-19/virología , Línea Celular , Quirópteros/genética , Quirópteros/virología , Formiato-Tetrahidrofolato Ligasa/antagonistas & inhibidores , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/antagonistas & inhibidores , Antígenos de Histocompatibilidad Menor , Complejos Multienzimáticos/antagonistas & inhibidores , Virus ARN/genética , SARS-CoV-2/patogenicidad , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
10.
J Stroke Cerebrovasc Dis ; 33(4): 107579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325032

RESUMEN

OBJECTIVE: Delayed cerebral ischemia (DCI)-induced cerebral infarction is a major cause of adverse neurological outcomes following aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to investigate the relationship between postoperative serum electrolyte levels and DCI in patients with aSAH. MATERIALS AND METHODS: We analyzed the data of patients with aSAH between 2015 and 2022. The patients were classified into two groups according to whether they experienced DCI. Electrolyte levels were categorized into three groups based on the normal ranges for electrolytes. Logistic regression models were used to study the relationship between electrolyte levels and DCI. Another logistic regression analysis was conducted to explore the relationship between the different severity levels of statistically significant indicators and DCI. A restrictive cubic spline model was adopted to assess the potential linear relationship between electrolytes and DCI. Subsequently, sensitivity analysis was performed to assess the impact of collinearity among ions. Finally, subgroup analysis was performed. RESULTS: This study included 1,099 patients. Patients with hyperchloremia were more prone to DCI than those with normal chloride levels. Subsequently, excluding the population with hypochloremia, both mild and severe hyperchloremia were found to be associated with an increased risk of DCI compared with normal chloride levels. Within the framework of a restrictive cubic spline, our findings revealed an increased incidence of DCI (P for nonlinear = 0.735) as chloride levels increased. Sensitivity analysis revealed that patients with severe hyperchloremia were more susceptible to DCI. CONCLUSIONS: This study found that patients with aSAH and postoperative hyperchloremia are more prone to developing DCI.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico , Estudios Retrospectivos , Cloruros , Infarto Cerebral/etiología , Infarto Cerebral/complicaciones , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/etiología
11.
J Infect Dis ; 227(11): 1255-1265, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36780397

RESUMEN

BACKGROUND: Neutralising antibodies (nAbs) play a critical role in the protection against severe COVID-19. In the era of vaccine boosters and repeated SARS-CoV-2 outbreaks, identifying individuals at risk represents a public health priority. METHODS: Relying on the Monaco COVID Public Health Programme, we evaluated nAbs from July 2021-June 2022 in 8,080 SARS-CoV-2 vaccinated and/or infected children and adults, at their inclusion visit. We stratified by infection status and investigated variables associated with nAbs using a generalised additive model. RESULTS: Infected and vaccinated participants had high and consistent nAbs (>800 IU/mL), which remained stable over time since injection, regardless of the number of vaccine doses, body mass index, sex, or age. By contrast, uninfected participants showed larger variability (two doses [V2] median 157.6; interquartile range [IQR] 43.3-439.1 IU/mL) versus three doses [V3] median 882.5; [829.5-914.8] IU/mL). NAbs decreased by 20% per month after V2 (adjusted ratio 0.80; 95%CI [0.79-0.82]), but remained stable after V3 (adjusted ratio 0.98; 95%CI [0.92-1.05]). CONCLUSIONS: Hybrid immunity provided stable, high and consistent nAbs over time. The benefit of boosters was marked to restore decaying nAbs in uninfected participants. NAbs could identify individuals at risk of severe COVID-19 and provide more targeted vaccine boosters' campaigns.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , Anticuerpos Neutralizantes , Estudios Transversales , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación
12.
J Infect Dis ; 227(2): 211-220, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35975942

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may be associated with worse clinical outcomes in people with human immunodeficiency virus (HIV) (PWH). We report anti-SARS-CoV-2 antibody responses in patients hospitalized with coronavirus disease 2019 in Durban, South Africa, during the second SARS-CoV-2 infection wave dominated by the Beta (B.1.351) variant. METHODS: Thirty-four participants with confirmed SARS-CoV-2 infection were followed up with weekly blood sampling to examine antibody levels and neutralization potency against SARS-CoV-2 variants. Participants included 18 PWH, of whom 11 were HIV viremic. RESULTS: SARS-CoV-2-specific antibody concentrations were generally lower in viremic PWH than in virologically suppressed PWH and HIV-negative participants, and neutralization of the Beta variant was 4.9-fold lower in viremic PWH. Most HIV-negative participants and antiretroviral therapy-suppressed PWH also neutralized the Delta (B.1.617.2) variant, whereas the majority of viremic PWH did not. CD4 cell counts <500/µL were associated with lower frequencies of immunoglobulin G and A seroconversion. In addition, there was a high correlation between a surrogate virus neutralization test and live virus neutralization against ancestral SARS-CoV-2 virus in both PWH and HIV-negative individuals, but correlation decreased for the Beta variant neutralization in PWH. CONCLUSIONS: HIV viremia was associated with reduced Beta variant neutralization. This highlights the importance of HIV suppression in maintaining an effective SARS-CoV-2 neutralization response.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , VIH , Viremia , Sudáfrica/epidemiología , Anticuerpos Antivirales , Infecciones por VIH/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Pruebas de Neutralización
13.
Immunol Cell Biol ; 101(10): 975-983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670482

RESUMEN

Mucosal antibodies play a key role in protection against breakthrough COVID-19 infections and emerging viral variants. Intramuscular adenovirus-based vaccination (Vaxzevria) only weakly induces nasal IgG and IgA responses, unless vaccinees have been previously infected. However, little is known about how Vaxzevria vaccination impacts the ability of mucosal antibodies to induce Fc responses, particularly against SARS-CoV-2 variants of concern (VoCs). Here, we profiled paired mucosal (saliva, tears) and plasma antibodies from COVID-19 vaccinated only vaccinees (uninfected, vaccinated) and COVID-19 recovered vaccinees (COVID-19 recovered, vaccinated) who both received Vaxzevria vaccines. SARS-CoV-2 ancestral-specific IgG antibodies capable of engaging FcγR3a were significantly higher in the mucosal samples of COVID-19 recovered Vaxzevria vaccinees in comparison with vaccinated only vaccinees. However, when IgG and FcγR3a engaging antibodies were tested against a panel of SARS-CoV-2 VoCs, the responses were ancestral-centric with weaker recognition of Omicron strains observed. In contrast, salivary IgA, but not plasma IgA, from Vaxzevria vaccinees displayed broad cross-reactivity across all SARS-CoV-2 VoCs tested. Our data highlight that while intramuscular Vaxzevria vaccination can enhance mucosal antibodies responses in COVID-19 recovered vaccinees, restrictions by ancestral-centric bias may have implications for COVID-19 protection. However, highly cross-reactive mucosal IgA could be key in addressing these gaps in mucosal immunity and may be an important focus of future SARS-CoV-2 vaccine development.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Formación de Anticuerpos , ChAdOx1 nCoV-19 , Vacunación , COVID-19/prevención & control , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina G , Anticuerpos Neutralizantes
14.
J Virol ; 96(20): e0115222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36173189

RESUMEN

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Asunto(s)
Quirópteros , Virosis , Virus , Humanos , Animales , Antígeno 2 del Estroma de la Médula Ósea/genética , Antivirales , Receptores Toll-Like
15.
Rheumatology (Oxford) ; 62(9): 3101-3109, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661304

RESUMEN

OBJECTIVES: To evaluate the humoral immunogenicity for 6 months after the two-dose coronavirus disease 2019 (COVID-19) mRNA vaccination in adolescents and young adults (AYAs) with childhood-onset rheumatic diseases (cRDs). METHODS: This monocentric observational study was conducted between August 2020 and March 2022. Humoral immunogenicity was assessed at 2-3 weeks after first vaccine dose and 1, 3 and 6 months after the second dose by the cPass™ severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralization antibody (nAb) assay. An inhibition signal of ≥30% defined the seroconversion threshold and the readings were calibrated against the World Health Organization International Standard for SARS-CoV-2 antibodies. RESULTS. ONE HUNDRED AND SIXTY-NINE: AYAs with cRDs were recruited [median age 16.8 years (interquartile range, IQR 14.7-19.5), 52% female, 72% Chinese]. JIA (58%) and SLE (18%) comprised the major diagnoses. After second vaccine dose, 99% seroconverted with a median nAb titre of 1779.8 IU/ml (IQR 882.8-2541.9), declining to 935.6 IU/ml (IQR 261.0-1514.9) and 683.2 IU/ml (IQR 163.5-1400.5) at the 3- and 6-month timepoints, respectively. The diagnosis of JIA [odds ratio (OR) 10.1, 95% CI 1.8-58.4, P = 0.010] and treatment with anti-TNF-α (aTNF) (OR 10.1, 95% CI 1.5-70.0, P = 0.019) were independently associated with a >50% drop of nAb titres at 6 months. Withholding MTX or MMF did not affect the vaccine response or decay rate. The COVID-19 breakthrough infection was estimated at 18.2 cases/1000 patient-months with no clinical risk factors identified. CONCLUSION: Over half of AYAs with cRDs had a significant drop in SARS-CoV-2 nAb at 6-month despite an initial robust humoral response. JIA and aTNF usage are predictors of a faster decay rate.


Asunto(s)
COVID-19 , Enfermedades Reumáticas , Niño , Adolescente , Femenino , Humanos , Adulto Joven , Masculino , Vacunas contra la COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Inhibidores del Factor de Necrosis Tumoral , SARS-CoV-2 , Anticuerpos Antivirales , Enfermedades Reumáticas/tratamiento farmacológico
16.
PLoS Biol ; 18(6): e3000644, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511236

RESUMEN

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/metabolismo , Carbapenémicos/farmacología , Citotoxicidad Inmunológica , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Granzimas/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Antiinfecciosos/farmacología , Carga Bacteriana/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Células HeLa , Humanos , Cinética
17.
Clin Lab ; 69(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37702666

RESUMEN

BACKGROUND: Thiamine responsive megaloblastic anemia (TRMA) is a genetic disease caused by SLC19A2 gene mutation. This study aimed to preliminarily explore the relationship between endoplasmic reticulum stress (ERS)-PERK signaling pathway and the pathogenesis of hyperglycemia induced by TRMA. METHODS: Islet ß (INS.1 and ß-TC-6) and HEK293T cell line models with stable overexpression of SLC19A2 and SLC19A2 (c.1409insT) were established. The cells were divided into empty virus group (control), wild-type group (overexpressed SLC19A2), and mutation group (overexpressed SLC19A2 (c.1409insT)). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blotting were used to detect the expression levels of ERS-PERK signaling pathway-related proteins, including glucose-regulated protein 78 (GRP78), protein kinase R-like ER kinase (PERK), and eukaryotic initiation factor 2 (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islet ß cells. Protein localization was assessed by immunofluorescence staining. RESULTS: Compared with the control group, the mRNA expression levels of SLC19A2 in wild-type and mutant islet ß cells (INS.1 and ß-TC-6) and HEK293T cells were significantly upregulated (all p < 0.05). Compared with the control group and the wild-type group, the mRNA expression levels of GRP78, PERK, eIF2α, ATF4, and CHOP were increased (all p < 0.05) in the mutant islet ß cells; the protein expression levels of PERK, GRP78, and eIF2α were elevated (all p < 0.05). In addition, the results of immunofluorescence staining showed that SLC19A2 (c.1409insT) mutation changed the localization of the proteins in the cells. Thus, they were not located on the cell surface, but in the cytoplasm and nuclei, and protein aggregation occurred in the cytoplasm. CONCLUSIONS: 1. Islet ß and HEK293Tcell lines, stably overexpressing SLC19A2 and SLC19A2 (c.1409insT) mutations, were successfully constructed. 2. SLC19A2 (c.1409insT) mutation could raise the expression levels of ERS-PERK signaling pathway-related proteins (GRP78, PERK, eIF2α, ATF4, and CHOP), and activate apoptosis pathway. 3. SLC19A2 (c.1409insT) mutation could change the localization of proteins and produce protein aggregation in cells. It could lead to protein misfolding and ERS, which would participate in the pathological mechanism of hyperglycemia induced by TRMA.


Asunto(s)
Anemia Perniciosa , Hiperglucemia , Humanos , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Agregado de Proteínas , Hiperglucemia/genética , Estrés del Retículo Endoplásmico/genética , Tiamina , ARN Mensajero , Proteínas de Transporte de Membrana
18.
Proc Natl Acad Sci U S A ; 117(46): 28939-28949, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33106404

RESUMEN

Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1ß and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1ß activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1ß cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1ß, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.


Asunto(s)
Caspasa 1/metabolismo , Quirópteros/inmunología , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Animales , Quirópteros/genética , Citocinas/metabolismo , ADN , Proteínas de Unión al ADN , Células HEK293 , Humanos , Inflamasomas/metabolismo , Macrófagos/metabolismo , Piroptosis , Transducción de Señal
19.
Proc Natl Acad Sci U S A ; 117(17): 9529-9536, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284399

RESUMEN

Bats are reservoirs of emerging viruses that are highly pathogenic to other mammals, including humans. Despite the diversity and abundance of bat viruses, to date they have not been shown to harbor exogenous retroviruses. Here we report the discovery and characterization of a group of koala retrovirus-related (KoRV-related) gammaretroviruses in Australian and Asian bats. These include the Hervey pteropid gammaretrovirus (HPG), identified in the scat of the Australian black flying fox (Pteropus alecto), which is the first reproduction-competent retrovirus found in bats. HPG is a close relative of KoRV and the gibbon ape leukemia virus (GALV), with virion morphology and Mn2+-dependent virion-associated reverse transcriptase activity typical of a gammaretrovirus. In vitro, HPG is capable of infecting bat and human cells, but not mouse cells, and displays a similar pattern of cell tropism as KoRV-A and GALV. Population studies reveal the presence of HPG and KoRV-related sequences in several locations across northeast Australia, as well as serologic evidence for HPG in multiple pteropid bat species, while phylogenetic analysis places these bat viruses as the basal group within the KoRV-related retroviruses. Taken together, these results reveal bats to be important reservoirs of exogenous KoRV-related gammaretroviruses.


Asunto(s)
Quirópteros/virología , Gammaretrovirus/aislamiento & purificación , Animales , Australia , Reservorios de Enfermedades/veterinaria , Reservorios de Enfermedades/virología , Phascolarctidae/virología
20.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139552

RESUMEN

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/veterinaria , Infecciones por Henipavirus/virología , Virus Nipah/clasificación , Virus Nipah/genética , Animales , Asia , Bangladesh/epidemiología , Brotes de Enfermedades , Femenino , Especificidad del Huésped , Humanos , Inmunidad , Masculino , Modelos Biológicos , Epidemiología Molecular , Virus Nipah/inmunología , Filogenia , Zoonosis/epidemiología , Zoonosis/inmunología , Zoonosis/transmisión , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA