Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
PLoS Pathog ; 19(11): e1011733, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943805

RESUMEN

Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.


Asunto(s)
Plantas , Esfingolípidos , Humanos , Animales , Esfingolípidos/química , Esfingolípidos/metabolismo , Plantas/metabolismo , Hongos/metabolismo , Transducción de Señal/fisiología , Membrana Celular/metabolismo , Mamíferos
2.
Plant Physiol ; 191(2): 1416-1434, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461917

RESUMEN

Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Especies Reactivas de Oxígeno , Ascorbato Peroxidasas/genética , Proteínas de Arabidopsis/genética , Luminol , Citosol , Peróxido de Hidrógeno , Arabidopsis/microbiología
3.
Cell Commun Signal ; 22(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195499

RESUMEN

The cell cycle is pivotal to cellular differentiation in plant pathogenic fungi. Cell wall integrity (CWI) signaling plays an essential role in coping with cell wall stress. Autophagy is a degradation process in which cells decompose their components to recover macromolecules and provide energy under stress conditions. However, the specific association between cell cycle, autophagy and CWI pathway remains unclear in model pathogenic fungi Magnaporthe oryzae. Here, we have identified MoSwe1 as the conserved component of the cell cycle in the rice blast fungus. We have found that MoSwe1 targets MoMps1, a conserved critical MAP kinase of the CWI pathway, through protein phosphorylation that positively regulates CWI signaling. The CWI pathway is abnormal in the ΔMoswe1 mutant with cell cycle arrest. In addition, we provided evidence that MoSwe1 positively regulates autophagy by interacting with MoAtg17 and MoAtg18, the core autophagy proteins. Moreover, the S phase initiation was earlier, the morphology of conidia and appressoria was abnormal, and septum formation and glycogen degradation were impaired in the ΔMoswe1 mutant. Our research defines that MoSWE1 regulation of G1/S transition, CWI pathway, and autophagy supports its specific requirement for appressorium development and virulence in plant pathogenic fungi. Video Abstract.


Asunto(s)
Ascomicetos , Ciclo Celular , Autofagia , Pared Celular
4.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594767

RESUMEN

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Asunto(s)
Ascomicetos , Virulencia , Proteínas , Ubiquitinación , Autofagia
5.
Arch Microbiol ; 206(8): 339, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958759

RESUMEN

Cordyceps cicadae is recognized for its medicinal properties, attributed to bioactive constituents like polysaccharides and adenosine, which have been shown to improve kidney and liver functions and possess anti-tumor properties. Rho GTPase activating proteins (Rho GAPs) serve as inhibitory regulators of Rho GTPases in eukaryotic cells by accelerating the GTP hydrolysis of Rho GTPases, leading to their inactivation. In this study, we explored the function of the CcRga8 gene in C. cicadae, which encodes a Rho-type GTPase activating protein. Our study found that the knockout of CcRga8 resulted in a decrease in polysaccharide levels and an increase in adenosine concentration. Furthermore, the mutants exhibited altered spore yield and morphology, fruiting body development, decreased infectivity, reduced resistance to hyperosmotic stress, oxidative conditions, and cell wall inhibitors. These findings suggest that CcRga8 plays a crucial role in the development, stress response, and bioactive compound production of C. cicadae.


Asunto(s)
Cordyceps , Cordyceps/metabolismo , Cordyceps/genética , Cordyceps/crecimiento & desarrollo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Adenosina/metabolismo , Polisacáridos/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Cuerpos Fructíferos de los Hongos/genética
6.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203820

RESUMEN

Microbes employ effectors to disrupt immune responses and promote host colonization. Conserved motifs including RXLR, LFLAK-HVLVxxP (CRN), Y/F/WxC, CFEM, LysM, Chitin-bind, DPBB_1 (PNPi), and Cutinase have been discovered to play crucial roles in the functioning of effectors in filamentous fungi. Nevertheless, little is known about effectors with conserved motifs in endophytes. This research aims to discover the effector genes with conserved motifs in the genome of rice endophyte Falciphora oryzae. SignalP identified a total of 622 secreted proteins, out of which 227 were predicted as effector candidates by EffectorP. By utilizing HMM features, we discovered a total of 169 effector candidates with conserved motifs and three novel motifs. Effector candidates containing LysM, CFEM, DPBB_1, Cutinase, and Chitin_bind domains were conserved across species. In the transient expression assay, it was observed that one CFEM and one LysM activated cell death in tobacco leaves. Moreover, two CFEM and one Chitin_bind inhibited cell death induced by Bax protein. At various points during the infection, the genes' expression levels were increased. These results will help to identify functional effector proteins involving omics methods using new bioinformatics tools, thus providing a basis for the study of symbiosis mechanisms.


Asunto(s)
Ascomicetos , Algoritmos , Bioensayo , Quitina , Endófitos
7.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542408

RESUMEN

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiología , Citoesqueleto/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica
8.
J Integr Plant Biol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953749

RESUMEN

The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.

9.
Physiol Plant ; 175(6): e14059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148194

RESUMEN

Endophytic fungi play an important role in the induction of plant tolerance to abiotic and biotic stresses. However, the role of endophytic fungi in the response of horticultural plants to plant stress remains largely unknown. Here, we addressed the role of the endophytic fungus Falciphora oryzae in enhancing salt tolerance in pepper (Capsicum annuum L.) by inoculation with the endophyte in the rhizosphere. F. oryzae could indeed colonize the roots of pepper and significantly improved the tolerance of pepper to salt stress. This resulted in increased plant growth and photosynthetic performance compared with control plants, which was accompanied by increases in indole acetic acid and abscisic acid biosynthesis and signaling. Furthermore, inoculation with F. oryzae significantly upregulated a subset of transcripts involved in Na+ homeostasis (NHX3, NHX6, NHX8, HKT2-1, and SOS1) and the high-affinity K+ transporter protein-related gene HAK1 in the leaves to maintain Na+ /K+ homeostasis. Moreover, the activity of antioxidant enzymes (catalase, peroxidase, glutathione, and ascorbate peroxidase), the content of glutathione, the transcript level of genes related to antioxidants (catalase, ascorbate peroxidase, glutathione reductase, peroxidase, glutamate-cysteine ligase, and glutamine synthetase) in the leaves were significantly upregulated after inoculation with F. oryzae, which led to decreased levels of lipid peroxidation (malondialdehyde) and reactive oxygen species. These results indicate that inoculation with F. oryzae can enhance the salt tolerance of pepper by promoting ion homeostasis and upregulating antioxidant defense systems.


Asunto(s)
Antioxidantes , Ascomicetos , Catalasa , Tolerancia a la Sal , Homeostasis , Glutatión Peroxidasa
10.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446367

RESUMEN

WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.


Asunto(s)
Nicotiana , Transcriptoma , Nicotiana/genética , Nicotiana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lípidos
11.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298247

RESUMEN

Calcineurin, a key regulator of the calcium signaling pathway, is involved in calcium signal transduction and calcium ion homeostasis. Magnaporthe oryzae is a devastating filamentous phytopathogenic fungus in rice, yet little is known about the function of the calcium signaling system. Here, we identified a novel calcineurin regulatory-subunit-binding protein, MoCbp7, which is highly conserved in filamentous fungi and was found to localize in the cytoplasm. Phenotypic analysis of the MoCBP7 gene deletion mutant (ΔMocbp7) showed that MoCbp7 influenced the growth, conidiation, appressorium formation, invasive growth, and virulence of M. oryzae. Some calcium-signaling-related genes, such as YVC1, VCX1, and RCN1, are expressed in a calcineurin/MoCbp7-dependent manner. Furthermore, MoCbp7 synergizes with calcineurin to regulate endoplasmic reticulum homeostasis. Our research indicated that M. oryzae may have evolved a new calcium signaling regulatory network to adapt to its environment compared to the fungal model organism Saccharomyces cerevisiae.


Asunto(s)
Magnaporthe , Oryza , Virulencia/genética , Calcineurina/genética , Calcineurina/metabolismo , Proteínas Portadoras/metabolismo , Señalización del Calcio , Calcio/metabolismo , Magnaporthe/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas
12.
Molecules ; 28(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37764443

RESUMEN

In fungi, the methylcitrate cycle converts cytotoxic propionyl-coenzyme A (CoA) to pyruvate, which enters gluconeogenesis. The glyoxylate cycle converts acetyl-CoA to succinate, which enters gluconeogenesis. The tricarboxylic acid cycle is a central carbon metabolic pathway that connects the methylcitrate cycle, the glyoxylate cycle, and other metabolisms for lipids, carbohydrates, and amino acids. Fungal citrate synthase and 2-methylcitrate synthase as well as isocitrate lyase and 2-methylisocitrate lyase, each evolved from a common ancestral protein. Impairment of the methylcitrate cycle leads to the accumulation of toxic intermediates such as propionyl-CoA, 2-methylcitrate, and 2-methylisocitrate in fungal cells, which in turn inhibits the activity of many enzymes such as dehydrogenases and remodels cellular carbon metabolic processes. The methylcitrate cycle and the glyoxylate cycle synergistically regulate carbon source utilization as well as fungal growth, development, and pathogenic process in pathogenic fungi.


Asunto(s)
Ciclo del Ácido Cítrico , Hongos , Acetilcoenzima A , Hongos/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
13.
Environ Microbiol ; 24(3): 1653-1671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35229430

RESUMEN

The development and pathogenicity of the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, require it to perceive external environmental signals. Opy2, an overproduction-induced pheromone-resistant protein 2, is a crucial protein for sensing external signals in Saccharomyces cerevisiae. However, the biological functions of the homologue of Opy2 in M. oryzae are unclear. In this study, we identified that MoOPY2 is involved in fungal development, pathogenicity, and autophagy in M. oryzae. Deletion of MoOPY2 resulted in pleiotropic defects in hyphal growth, conidiation, germ tube extension, appressorium formation, appressorium turgor generation, and invasive growth, therefore leading to attenuated pathogenicity. Furthermore, MoOpy2 participates in the Osm1 MAPK pathway and the Mps1 MAPK pathway by interacting with the adaptor protein Mst50. The interaction sites of Mst50 and MoOpy2 colocalized with the autophagic marker protein MoAtg8 in the preautophagosomal structure sites (PAS). Notably, the ΔMoopy2 mutant caused cumulative MoAtg8 lipidation and rapid GFP-MoAtg8 degradation in response to nitrogen starvation, showing that MoOpy2 is involved in the negative regulation of autophagy activity. Taken together, our study revealed that MoOpy2 of M. oryzae plays an essential role in the orchestration of fungal development, appressorium penetration, autophagy and pathogenesis.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Autofagia/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Magnaporthe/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia/genética
14.
Environ Microbiol ; 24(3): 1076-1092, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472190

RESUMEN

Magnaporthe oryzae is an important plant pathogen that causes rice blast. Hse1 and Vps27 are components of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway and biogenesis. To date, the biological functions of ESCRT-0 in M. oryzae have not been determined. In this study, we identified and characterized Hse1 and Vps27 in M. oryzae. Disruption of MoHse1 and MoVps27 caused pleiotropic defects in growth, conidiation, sexual development and pathogenicity, thereby resulting in loss of virulence in rice and barley leaves. Disruption of MoHse1 and MoVps27 triggered increased lipidation of MoAtg8 and degradation of GFP-MoAtg8, indicating that ESCRT-0 is involved in the regulation of autophagy. ESCRT-0 was determined to interact with coat protein complex II (COPII), a regulator functioning in homeostasis of the endoplasmic reticulum (ER homeostasis), and disruption of MoHse1 and MoVps27 also blocked activation of the unfolded protein response (UPR) and autophagy of the endoplasmic reticulum (ER-phagy). Overall, our results indicate that ESCRT-0 plays critical roles in regulating fungal development, virulence, autophagy and ER-phagy in M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Autofagia/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia
15.
New Phytol ; 236(2): 576-589, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842786

RESUMEN

Development in higher organisms requires proper gene silencing, partially achieved through trimethylation of lysine 27 on histone H3 (H3K27me3). However, how the normal distribution of this modification is established and maintained and how it affects gene expression remains unclear, especially in fungi. Polycomb repressive complex 2 (PRC2) catalyses H3K27me3 to assemble transcriptionally repressed facultative heterochromatin and is crucial in animals, plants, and fungi. Here, we report on the critical role of an additional PRC2 subunit in the normal distribution of H3K27me3 occupancy and the stable maintenance of gene repression in the rice fungal pathogen Magnaporthe oryzae. P55, identified as an additional PRC2 subunit, is physically associated with core subunits of PRC2 and is required for a complete level of H3K27me3 modification. Loss of P55 caused severe global defects in the normal distribution of H3K27me3 and transcriptional reprogramming on the H3K27me3-occupied genes. Furthermore, we found that the Sin3 histone deacetylase complex was required to sustain H3K27me3 occupancy and stably maintain gene repression by directly interacting with P55. Our results revealed a novel mechanism by which P55 and Sin3 participate in the normal distribution of facultative heterochromatic modifications and the stable maintenance of gene repression in eukaryotes.


Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Animales , Ascomicetos , Heterocromatina/genética , Histonas/metabolismo , Lisina/metabolismo , Distribución Normal , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
16.
Plant Cell Environ ; 45(12): 3399-3411, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36175003

RESUMEN

Humidity is a critical environmental factor affecting the epidemic of plant diseases. However, it is still unclear how ambient humidity affects the occurrence of diseases in plants. In this study, we show that high ambient humidity enhanced blast development in rice plants under laboratory conditions. Furthermore, we found that high ambient humidity enhanced the virulence of Magnaporthe oryzae by promoting conidial germination and appressorium formation. In addition, the results of RNA-sequencing analysis and the ethylene content assessment revealed that high ambient humidity suppressed the accumulation of ethylene and the activation of ethylene signaling pathway induced by M. oryzae in rice. Knock out of ethylene signaling genes OsEIL1 and OsEIN2 or exogenous application of 1-methylcyclopropene (ethylene inhibitor) and ethephon (ethylene analogues) eliminated the difference of blast resistance between the 70% and 90% relative humidity conditions, suggesting that the activation of ethylene signaling contributes to humidity-modulated basal resistance against M. oryzae in rice. In conclusion, our results demonstrated that high ambient humidity enhances the virulence of M. oryzae and compromises basal resistance by reducing the activation of ethylene biosynthesis and signaling in rice. Results from this study provide cues for novel strategies to control rice blast under global environmental changes.


Asunto(s)
Magnaporthe , Oryza , Magnaporthe/genética , Oryza/genética , Virulencia , Humedad , Enfermedades de las Plantas/genética , Etilenos/metabolismo , Resistencia a la Enfermedad/genética
17.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955497

RESUMEN

Plant diseases cause substantial loss to crops all over the world, reducing the quality and quantity of agricultural goods significantly. One of the world's most damaging plant diseases, rice blast poses a substantial threat to global food security. Magnaporthe oryzae causes rice blast disease, which challenges world food security by causing substantial damage in rice production annually. Autophagy is an evolutionarily conserved breakdown and recycling system in eukaryotes that regulate homeostasis, stress adaption, and programmed cell death. Recently, new studies found that the autophagy process plays a vital role in the pathogenicity of M. oryzae and the regulation mechanisms are gradually clarified. Here we present a brief summary of the recent advances, concentrating on the new findings of autophagy regulation mechanisms and summarize some autophagy-related techniques in rice blast fungus. This review will help readers to better understand the relationship between autophagy and the virulence of plant pathogenic fungi.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/metabolismo , Autofagia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
18.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887015

RESUMEN

Magnaporthe oryzae is the causal agent of rice blast, leading to significant reductions in rice and wheat productivity. Nap1 is a conserved protein in eukaryotes involved in diverse physiological processes, such as nucleosome assembly, histone shuttling between the nucleus and cytoplasm, transcriptional regulation, and the cell cycle. Here, we identified Nap1 and characterized its roles in fungal development and virulence in M. oryzae. MoNap1 is involved in aerial hyphal and conidiophore differentiation, sporulation, appressorium formation, plant penetration, and virulence. ΔMonap1 generated a small, elongated, and malformed appressorium with an abnormally organized septin ring on hydrophobic surfaces. ΔMonap1 was more sensitive to cell wall integrity stresses but more resistant to microtubule stresses. MoNap1 interacted with histones H2A and H2B and the B-type cyclin (Cyc1). Moreover, a nuclear export signal (NES) domain is necessary for Nap1's roles in the regulation of the growth and pathogenicity of M. oryzae. In summary, NAP1 is essential for the growth, appressorium formation, and pathogenicity of M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Naftalenos , Proteína 1 de Ensamblaje de Nucleosomas/genética , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Oligopéptidos , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo , Virulencia
19.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897680

RESUMEN

Magnaporthe oryzae is an important pathogen that causes a devastating disease in rice. It has been reported that the dual-specificity LAMMER kinase is conserved from yeast to animal species and has a variety of functions. However, the functions of the LAMMER kinase have not been reported in M. oryzae. In this study, we identified the unique LAMMER kinase MoKns1 and analyzed its function in M. oryzae. We found that in a MoKNS1 deletion mutant, growth and conidiation were primarily decreased, and pathogenicity was almost completely lost. Furthermore, our results found that MoKns1 is involved in autophagy. The ΔMokns1 mutant was sensitive to rapamycin, and MoKns1 interacted with the autophagy-related protein MoAtg18. Compared with the wild-type strain 70-15, autophagy was significantly enhanced in the ΔMokns1 mutant. In addition, we also found that MoKns1 regulated DNA damage stress pathways, and the ΔMokns1 mutant was more sensitive to hydroxyurea (HU) and methyl methanesulfonate (MMS) compared to the wild-type strain 70-15. The expression of genes related to DNA damage stress pathways in the ΔMokns1 mutant was significantly different from that in the wild-type strain. Our results demonstrate that MoKns1 is an important pathogenic factor in M. oryzae involved in regulating autophagy and DNA damage response pathways, thus affecting virulence. This research on M. oryzae pathogenesis lays a foundation for the prevention and control of M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Oryza/metabolismo , Enfermedades de las Plantas , Esporas Fúngicas , Virulencia/genética
20.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012276

RESUMEN

The DExD/H-box protein family encompasses a large number of RNA helicases that are involved in RNA metabolism and a variety of physiological functions in different species. However, there is limited knowledge of whether DExD/H-box proteins play a role in the pathogenicity of plant fungal pathogens. In the present work, the DExD/H-box protein MoDHX35, which belongs to the DEAH subfamily, was shown to be crucial in appressoria formation and full virulence of the rice blast fungus, Magnaporthe oryzae. The predicted protein sequence of MoDHX35 had typical DEAH-box domains, showed 47% identity to DHX35 in Homo species, but had no orthologs in Saccharomyces cerevisiae. Deletion of the MoDHX35 gene resulted in reduced tolerance of the mutants to doxorubicin, a nucleic acid synthesis disturbing agent, suggesting the involvement of MoDHX35 in RNA metabolism. MoDHX35-deleted mutants exhibited normal vegetative growth, conidia generation and conidial germination, but showed a reduced appressorium formation rate and attenuated virulence. Our work demonstrates the involvement of DEAH-box protein functions in the pathogenicity of plant fungal pathogens.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Oryza/genética , Enfermedades de las Plantas/microbiología , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA