Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(22): 4049-4066.e25, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36208623

RESUMEN

Blocking PD-1/PD-L1 signaling transforms cancer therapy and is assumed to unleash exhausted tumor-reactive CD8+ T cells in the tumor microenvironment (TME). However, recent studies have also indicated that the systemic tumor-reactive CD8+ T cells may respond to PD-1/PD-L1 immunotherapy. These discrepancies highlight the importance of further defining tumor-specific CD8+ T cell responders to PD-1/PD-L1 blockade. Here, using multiple preclinical tumor models, we revealed that a subset of tumor-specific CD8+ cells in the tumor draining lymph nodes (TdLNs) was not functionally exhausted but exhibited canonical memory characteristics. TdLN-derived tumor-specific memory (TTSM) cells established memory-associated epigenetic program early during tumorigenesis. More importantly, TdLN-TTSM cells exhibited superior anti-tumor therapeutic efficacy after adoptive transfer and were characterized as bona fide responders to PD-1/PD-L1 blockade. These findings highlight that TdLN-TTSM cells could be harnessed to potentiate anti-tumor immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Neoplasias/terapia , Neoplasias/patología , Ganglios Linfáticos/patología
2.
Front Immunol ; 13: 875718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784297

RESUMEN

Cytotoxic CD8+ T cells are the main focus of efforts to understand anti-tumor immunity and immunotherapy. The adoptive transfer of tumor-reactive cytotoxic CD8+ T lymphocytes expanded and differentiated in vitro has long been considered the primary strategy in adaptive anti-tumor immunity, however, the majority of the transferred tumor antigen-specific CD8+ T cells differentiated into CD39+CD69+ exhausted progenies, limiting its effects in repressing tumor growth. Contrarily, less attention has been addressed to the role of CD4+ T cells during tumorigenesis. Using a mouse model of metastatic melanoma, we found that transferring tumor-specific CD4+ T cells into recipients induces substantial regression of the established metastatic tumors. Notably, in vitro activated CD4+ T cells developed into cytotoxic CD4- T cells in vivo and get exhausted gradually. The blockade of PD-L1 signaling resulted in an expansion of tumor specific CD4+ T cells, which could better control the established metastatic melanoma. Moreover, the tumor-specific memory CD4+ T cell can prevent mice from tumor metastasis, and the tumor-specific effector CD4+ T cells can also mitigate the established metastatic tumor. Overall, our findings suggest a novel mechanism of CD4+ T cells in curtailing tumor metastasis and confirm their therapeutic role in combination with PD-L1 blockade in cancer immunotherapy. Hence, a better understanding of cytotoxic CD4- T cell-mediated tumor regression could provide an alternative choice for patients exhibiting suboptimal or no response to CD8+ T cell-based immunotherapies.


Asunto(s)
Antineoplásicos , Melanoma , Neoplasias Primarias Secundarias , Antígeno B7-H1 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Humanos
3.
J Immunol Methods ; 505: 113266, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398062

RESUMEN

Follicular regulatory T cells (Tfrs), a specialized subset of regulatory T cells (Tregs), have a particular role in the control of follicular helper T cell-driven germinal center (GC) responses. Following differentiation signals similar to those received by follicular helper T cells (Tfhs), Tfrs gain expression of characteristic chemokine receptors and transcription factors, such as CXCR5 and Bcl-6, allowing them to migrate into the B-cell follicle and perform in situ suppression. Thus, together with Tfhs, Tfrs help maintaining an optimized GC-reaction. However, the mechanism underlying the Treg-to-Tfr transition remains obscure. Here, we established a highly reproducible protocol for investigating the differentiation of Tregs into Tfrs by constructing spleen-chimeric mice combined with retrovirus transduction. We demonstrated that using this strategy, over 4 folds of Tregs could differentiate into Tfrs in Bcl-6 overexpression group compared to control counterparts (Migr1), and Bcl-6 could efficiently promote Tfr differentiation during acute viral infection. Hence, this method provides us an easy access to investigate the factors that regulate the differentiation program that converts Tregs into Tfrs, which will enhance our understanding of the networks regulating GC-reaction and shed new light on the molecular basis of immune homeostasis.


Asunto(s)
Linfocitos T Reguladores , Virosis , Animales , Linfocitos B , Centro Germinal , Ratones , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores , Virosis/metabolismo
4.
J Vis Exp ; (172)2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180896

RESUMEN

T cell-mediated immunity plays a crucial role in immune responses against tumors, with cytotoxic T lymphocytes (CTLs) playing the leading role in eradicating cancerous cells. However, the origins and replenishment of tumor antigen-specific CD8+ T cells within the tumor microenvironment (TME) remain obscure. This protocol employs the B16F10-OVA melanoma cell line, which stably expresses the surrogate neoantigen, ovalbumin (OVA), and TCR transgenic OT-I mice, in which over 90% of CD8+ T cells specifically recognize the OVA-derived peptide OVA257-264 (SIINFEKL) bound to the class I major histocompatibility complex (MHC) molecule H2-Kb. These features enable the study of antigen-specific T cell responses during tumorigenesis. Combining this model with tumor transplantation surgery, tumor tissues from donors were transplanted into tumor-matched syngeneic recipient mice to precisely trace the influx of recipient-derived immune cells into transplanted donor tissues, allowing the analysis of the immune responses of tumor-inherent and periphery-originated antigen-specific CD8+ T cells. A dynamic transition was found to occur between these two populations. Collectively, this experimental design has provided another approach to precisely investigate the immune responses of CD8+ T cells in TME, which will shed new light on tumor immunology.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina , Linfocitos T Citotóxicos , Microambiente Tumoral
5.
Front Immunol ; 11: 806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477338

RESUMEN

During tumorigenesis, tumor infiltrating regulatory T (Treg) cells restrict the function of effector T cells in tumor microenvironment and thereby promoting tumor growth. The anti-tumor activity of effector T cells can be therapeutically unleashed, and is now being exploited for the treatment of various types of human cancers. However, the immune suppressive function of Treg cells remains a major hurdle to broader effectiveness of tumor immunotherapy. In this article, we reported that the deletion of Bcl6 specifically in Treg cells led to stunted tumor growth, which was caused by impaired Treg cell responses. Notably, Bcl6 is essential in maintaining the lineage stability of Treg cells in tumor microenvironment. Meanwhile, we found that the absence of follicular regulatory T (Tfr) cells, which is a result of Bcl6 deletion in Foxp3+ cells, was dispensable for tumor control. Importantly, the increased Bcl6 expression in Treg cells is associated with poor prognosis of human colorectal cancer and lymph node metastasis of skin melanoma. Furthermore, Bcl6 deletion in Treg cells exhibits synergistic effects with immune checkpoint blockade therapy. Collectively, these results indicate that Bcl6 actively participates in regulating Treg cell immune responses during tumorigenesis and can be exploited as a therapeutic target of anti-tumor immunity.


Asunto(s)
Carcinogénesis/inmunología , Neoplasias Colorrectales/genética , Inmunidad , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Neoplasias Cutáneas/genética , Linfocitos T Reguladores/inmunología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Femenino , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-6/deficiencia , Neoplasias Cutáneas/patología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA