Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Stem Cell ; 25(4): 542-557.e9, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495780

RESUMEN

Invariant natural killer T (iNKT) cells are potent immune cells for targeting cancer; however, their clinical application has been hindered by their low numbers in cancer patients. Here, we developed a proof-of-concept for hematopoietic stem cell-engineered iNKT (HSC-iNKT) cell therapy with the potential to provide therapeutic levels of iNKT cells for a patient's lifetime. Using a human HSC engrafted mouse model and a human iNKT TCR gene engineering approach, we demonstrated the efficient and long-term generation of HSC-iNKT cells in vivo. These HSC-iNKT cells closely resembled endogenous human iNKT cells, could deploy multiple mechanisms to attack tumor cells, and effectively suppressed tumor growth in vivo in multiple human tumor xenograft mouse models. Preclinical safety studies showed no toxicity or tumorigenicity of the HSC-iNKT cell therapy. Collectively, these results demonstrated the feasibility, safety, and cancer therapy potential of the proposed HSC-iNKT cell therapy and laid a foundation for future clinical development.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Inmunoterapia Adoptiva/métodos , Células T Asesinas Naturales/fisiología , Neoplasias/terapia , Animales , Células Cultivadas , Ingeniería Genética , Humanos , Ratones , Ratones SCID , Células T Asesinas Naturales/trasplante , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Stem Cells Dev ; 25(24): 1863-1873, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27608727

RESUMEN

The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34+ hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ-/-) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.


Asunto(s)
Alergia e Inmunología , Médula Ósea/fisiología , Inmunoterapia , Hígado/fisiología , Timo/fisiología , Animales , Linaje de la Célula , Humanos , Patrón de Herencia/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Linfocitos T/citología , Timo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA