Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant Biotechnol J ; 21(2): 419-432, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36382925

RESUMEN

Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%-26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Fenotipo , Alelos
2.
J Am Chem Soc ; 144(44): 20267-20277, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36305871

RESUMEN

A new method to install a proton relay that enhances the reactivity near an active catalytic site for H2 production is reported, afforded by the electrochemical reduction and protonation of one of the ligands in the paddlewheel Rh2(II,II) hydrogen evolution complex, cis-[Rh2(DPhF)2(bncn)2]2+ (Rh-bncn; DPhF = N,N'-diphenylformamidinate, bncn = benzo[c]cinnoline). An electrochemical reversible prewave is observed for Rh-bncn at potentials more positive than the first bncn-centered reduction couple in the presence of strong acids, observed at -0.72 V vs Fc+/0 (Fc = ferrocene) in the cyclic voltammograms (CVs) in DMF (0.1 M TBAPF6). The origin of this prewave is shown to arise from a precatalytic transformation that originates from a concerted proton-electron transfer (CPET) event occurring at one of the bridging bncn ligands. Through electrochemical analysis, CV simulations, and electronic structure calculations, a reaction mechanism is elucidated. In this system, the electrochemically formed N-H bond on the reduced bncn ligand serves as a proton relay in the H2 formation reaction through a cooperative interligand pathway involving one of the bridging DPhF ligands after a second reduction step, accessible at approximately -1.15 V vs Fc+/0. Since calculations show that hydrogen evolution takes place at the bridging ligands and does not involve the dirhodium core, it is predicted that more abundant metal centers can be incorporated into this ligand scaffold, leading to new candidates for electrocatalytic hydrogen reduction. As such, this work delineates a new design strategy to incorporate proton relays in molecular bimetallic hydrogen evolution electrocatalysts to achieve higher efficiency.


Asunto(s)
Hidrógeno , Hidrogenasas , Hidrógeno/química , Protones , Hidrogenasas/química , Ligandos , Catálisis
3.
Chemistry ; 27(17): 5379-5387, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33104237

RESUMEN

Dinuclear rhodium complexes are attractive candidates as homogeneous panchromatic photosensitizers and photocatalysts. Modification of the coordination sphere of the Rh2 (II,II) compounds results in photophysical and redox properties that are highly desirable for electro- and photocatalysis. Specifically, Rh2 (II,II) complexes have shown promising catalytic activity towards proton reduction to generate H2 , a clean fuel, and for the selective reduction of CO2 to HCOOH. In addition, paddlewheel Rh2 (II,II) complexes provide robust platforms for the design of efficient and stable single-component photocatalysts. Optimization of the Rh2 (II,II) catalysts is crucial to realize their future application in devices or systems designed for the production of fuels from sunlight.

4.
Faraday Discuss ; 225: 371-383, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107542

RESUMEN

Metal-organic frameworks (MOFs) provide a suitable platform for stable and efficient heterogeneous photoelectrochemical oxidation catalysis due to their highly ordered structure, large surface area, and synthetic tunability. Herein, a mixed-linker MOF comprising of a photosensitizer [Ru(dcbpy)(bpy)2]2+ (bpy = 2,2'-bipyridine, dcbpy = 5,5'-dicarboxy-2,2'-bipyridine) and catalyst [Ru(tpy)(dcbpy)Cl]+ (tpy = 2,2':6',2''-terpyridine) that were incorporated into the UiO-67 framework and grown as thin films on a TiO2-coated, fluorine-doped tin oxide (FTO) electrode (RuB-RuTB-UiO-67/TiO2/FTO). When used as an electrode for the photoelectrochemical oxidation of benzyl alcohol, the mixed-linker MOF film showed a faradaic efficiency of 34%, corresponding to a 3-fold increase in efficiency relative to the RuB-UiO-67/TiO2/FTO control. This increase in catalytic efficiency is ascribed to the activation of RuTB moieties via oxidation by photogenerated RuIIIB. Transient absorption spectroscopy revealed the delayed appearance of RuIIITB* or RuIIITB formation, occurring with a lifetime of 21 ns, due to energy and/or electron transfer. The recovery kinetics of the charge separated state was increased (283 µs) in comparison to single-component control experiments (105 µs for RuB-UiO-67/TiO2/FTO and 7 µs for RuTB-UiO-67/TiO2/FTO) indicating a cooperative effect that could be exploited in chromophore/catalyst MOF motifs.

5.
Biochem Biophys Res Commun ; 519(4): 674-681, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31543348

RESUMEN

Long-term high salt intake leads to cardiac hypertrophy, but the mechanism remains elusive. Transient receptor potential channel, canonical 3(TRPC3), located in mitochondria, regulates mitochondrial calcium and reactive oxygen species(ROS) production. Herein, we investigated whether TRPC3 participates in high salt-induced cardiac hypertrophy by impairing cardiac mitochondrial function. High salt treatment increased the expression of mitochondrial TRPC3 in cardiomyocytes, accompanied by enhanced mitochondrial calcium uptake and elevated ROS production. Inhibition of TRPC3 significantly reduced high salt-induced ROS generation, promoted ATP production by stimulating oxidative phosphorylation, and increased enzyme activity in mitochondria in cardiomyocytes. Additionally, TRPC3 deficiency inhibited high salt-induced cardiac hypertrophy in vivo. A long-term high salt diet increased cardiac mitochondrial TRPC3 expression, elevated expression of cardiac hypertrophic markers atrial natriuretic peptide (ANP),brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MHC) and decreased ATP production and mitochondrial complex I and II enzyme activity in a TRPC3-dependent manner. TRPC3 deficiency antagonises high salt diet-mediated cardiac hypertrophy by ameliorating TRPC3-mediated cardiac mitochondrial dysfunction. TRPC3 may therefore represent a novel target for preventing high salt-induced cardiac damage.


Asunto(s)
Calcio/metabolismo , Cardiomegalia/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPC/deficiencia , Adenosina Trifosfato/metabolismo , Animales , Factor Natriurético Atrial/metabolismo , Cardiomegalia/etiología , Cardiomegalia/genética , Línea Celular , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Ratones Noqueados , Miocitos Cardíacos/efectos de los fármacos , Péptido Natriurético Encefálico/metabolismo , Ratas , Cloruro de Sodio Dietético/efectos adversos , Canales Catiónicos TRPC/genética
6.
BMC Plant Biol ; 19(1): 249, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185908

RESUMEN

BACKGROUND: As an elite japonica rice variety, Kongyu-131 has been cultivated for over 20 years in the third accumulated temperature zone of Heilongjiang Province, China. However, the cultivated area of Kongyu-131 has decreased each year due to extensive outbreaks of rice blast. To achieve the goals of improving blast resistance and preserving other desirable traits in Kongyu-131, a genome-updating method similar to repairing a bug in a computer program was adopted in this study. A new allele of the broad-spectrum blast resistance gene pi21 in the upland rice variety GKGH was mined by genetic analysis and introgressed into the genome of Kongyu-131 to upgrade its blast resistance. RESULT: QTL analysis was performed with an F2 population derived from a cross between Kongyu-131 and GKGH, and a blast resistance QTL was detected near the pi21 locus. Parental Pi21 sequence alignment showed that the pi21 of the donor (GKGH) was a new allele. By 5 InDel or SNP markers designed based on the sequence within and around pi21, the introgressed chromosome segment was shortened to less than 634 kb to minimize linkage drag by screening recombinants in the target region. The RRPG was 99.92%, calculated according to 201 SNP markers evenly distributed on 12 chromosomes. Artificial inoculation at the seedling stage showed that the blast resistance of the new Kongyu-131 was improved significantly. Field experiments also indicated that the improved Kongyu-131 had enhanced field resistance to rice blast and grain-quality traits similar to those of the original Kongyu-131. CONCLUSIONS: It is feasible to improve resistance to rice blast and preserve other desirable traits by precisely improving the Pi21 locus of Kongyu-131. Linkage drag can be eliminated effectively via recombinant selection on both sides of the target gene.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Ligamiento Genético , Magnaporthe/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
7.
J Am Chem Soc ; 140(3): 993-1003, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29268601

RESUMEN

Metal-organic frameworks (MOFs) have shown great promise in catalysis, mainly due to their high content of active centers, large internal surface areas, tunable pore size, and versatile chemical functionalities. However, it is a challenge to rationally design and construct MOFs that can serve as highly stable and reusable heterogeneous catalysts. Here two new robust 3D porous metal-cyclam-based zirconium MOFs, denoted VPI-100 (Cu) and VPI-100 (Ni), have been prepared by a modulated synthetic strategy. The frameworks are assembled by eight-connected Zr6 clusters and metallocyclams as organic linkers. Importantly, the cyclam core has accessible axial coordination sites for guest interactions and maintains the electronic properties exhibited by the parent cyclam ring. The VPI-100 MOFs exhibit excellent chemical stability in various organic and aqueous solvents over a wide pH range and show high CO2 uptake capacity (up to ∼9.83 wt% adsorption at 273 K under 1 atm). Moreover, VPI-100 MOFs demonstrate some of the highest reported catalytic activity values (turnover frequency and conversion efficiency) among Zr-based MOFs for the chemical fixation of CO2 with epoxides, including sterically hindered epoxides. The MOFs, which bear dual catalytic sites (Zr and Cu/Ni), enable chemistry not possible with the cyclam ligand under the same conditions and can be used as recoverable stable heterogeneous catalysts without losing performance.

8.
Inorg Chem ; 54(9): 4328-36, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25898142

RESUMEN

Two Zn-based metal organic frameworks have been prepared solvothermally, and their selectivity for CO2 adsorption was investigated. In both frameworks, the inorganic structural building unit is composed of Zn(II) bridged by the 2-carboxylate or 5-carboxylate pendants of 2,5-pyridine dicarboxylate (pydc) to form a 1D zigzag chain. The zigzag chains are linked by the bridging 2,5-carboxylates across the Zn ions to form 3D networks with formulas of Zn4(pydc)4(DMF)2·3DMF (1) and Zn2(pydc)2(DEF) (2). The framework (1) contains coordinated DMF as well as DMF solvates (DMF = N,N-dimethylformamide), while (2) contains coordinated DEF (DEF = N,N-diethylformamide). (1) displays a reversible type-I sorption isotherm for CO2 and N2 with BET surface areas of 196 and 319 m(2)/g, respectively. At low pressures, CO2 and N2 isotherms for (2) were not able to reach saturation, indicative of pore sizes too small for the gas molecules to penetrate. A solvent exchange to give (2)-MeOH allowed for increased CO2 and N2 adsorption onto the MOF surface with BET surface areas of 41 and 39 m(2)/g, respectively. The binding of CO2 into the framework of (1) was found to be exothermic with a zero coverage heat of adsorption, Qst(0), of −27.7 kJ/mol. The Qst(0) of (2) and (2)-MeOH were found to be −3 and −41 kJ/mol, respectively. The CO2/N2 selectivity for (1), calculated from the estimated KH at 296 K, was found to be 42. At pressures relevant to postcombustion capture, the selectivity was 14. The thermodynamic data are consistent with a mechanism of adsorption that involves CO2 binding to the unsaturated Zn(II) metal centers present in the crystal structures.

9.
Am J Hypertens ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820173

RESUMEN

BACKGROUND: Renal proximal tubule plays a pivotal role in regulating sodium reabsorption and thus blood pressure. Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigates high salt intake induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. METHODS: Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group] or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for six months. Urinary sodium excretion, ROS production, mitochondrial function and the expression of NHE3 and Na+/K+-ATPase of renal proximal tubules were determined. RESULTS: Chronic dietary cinnamaldehyde supplementation reduced tail systolic blood pressure and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production and alleviated mitochondrial dysfunction of renal proximal tubules in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. CONCLUSION: The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.

10.
Heliyon ; 9(8): e18629, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37588604

RESUMEN

Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive ROS production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.

11.
Mol Plant ; 14(6): 1012-1023, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930508

RESUMEN

The genetic improvement of nitrogen use efficiency (NUE) of crops is vital for grain productivity and sustainable agriculture. However, the regulatory mechanism of NUE remains largely elusive. Here, we report that the rice Grain number, plant height, and heading date7 (Ghd7) gene genetically acts upstream of ABC1 REPRESSOR1 (ARE1), a negative regulator of NUE, to positively regulate nitrogen utilization. As a transcriptional repressor, Ghd7 directly binds to two Evening Element-like motifs in the promoter and intron 1 of ARE1, likely in a cooperative manner, to repress its expression. Ghd7 and ARE1 display diurnal expression patterns in an inverse oscillation manner, mirroring a regulatory scheme based on these two loci. Analysis of a panel of 2656 rice varieties suggests that the elite alleles of Ghd7 and ARE1 have undergone diversifying selection during breeding. Moreover, the allelic distribution of Ghd7 and ARE1 is associated with the soil nitrogen deposition rate in East Asia and South Asia. Remarkably, the combination of the Ghd7 and ARE1 elite alleles substantially improves NUE and yield performance under nitrogen-limiting conditions. Collectively, these results define a Ghd7-ARE1-based regulatory mechanism of nitrogen utilization, providing useful targets for genetic improvement of rice NUE.


Asunto(s)
Nitrógeno/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Alelos , Grano Comestible/química , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/química , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Semillas/genética , Semillas/metabolismo
12.
Mol Plant ; 14(6): 997-1011, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33741527

RESUMEN

Grain number per panicle (GNP) is an important agronomic trait that contributes to rice grain yield. Despite its importance in rice breeding, the molecular mechanism underlying GNP regulation remains largely unknown. In this study, we identified a previously unrecognized regulatory gene that controls GNP in rice, Oryza sativa REPRODUCTIVE MERISTEM 20 (OsREM20), which encodes a B3 domain transcription factor. Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat (IR) sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties. Furthermore, we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence. Interestingly, the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions, and were independently inherited into the japonica and indica subspecies, respectively, during domestication. Importantly, we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding. Taken together, our study characterizes novel genetic variations responsible for GNP diversity in rice, reveals the underlying molecular mechanism in the regulation of agronomically important gene expression, and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.


Asunto(s)
Grano Comestible/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Alelos , Domesticación , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Secuencias Invertidas Repetidas , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Regiones Promotoras Genéticas
13.
Mol Genet Genomics ; 283(4): 305-15, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20140455

RESUMEN

Reproductive isolation plays an important role in speciation as it restricts gene flow and accelerates genetic divergence between formerly interbreeding population. In rice, hybrid breakdown is a common reproductive isolation observed in both intra and inter-specific crosses. It is a type of post-zygotic reproductive isolation in which sterility and weakness are manifested in the F(2) and later generations. In this study, the physiological and molecular basis of hybrid breakdown caused by two recessive genes, hbd2 and hbd3, in a cross between japonica variety, Koshihikari, and indica variety, Habataki, were investigated. Fine mapping of hbd2 resulted in the identification of the causal gene as casein kinase I (CKI1). Further analysis revealed that hbd2-CKI1 allele gains its deleterious function that causes the weakness phenotype by a change of one amino acid. As for the other gene, hbd3 was mapped to the NBS-LRR gene cluster region. It is the most common class of R-gene that triggers the immune signal in response to pathogen attack. Expression analysis of pathogen response marker genes suggested that weakness phenotype in this hybrid breakdown can be attributed to an autoimmune response. So far, this is the first evidence linking autoimmune response to post-zygotic isolation in rice. This finding provides a new insight in understanding the molecular and evolutionary mechanisms establishing post-zygotic isolation in plants.


Asunto(s)
Autoinmunidad , Eliminación de Gen , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Familia de Multigenes , Mutación , Oryza/crecimiento & desarrollo , Cigoto
14.
Hypertens Res ; 43(7): 679-687, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32037396

RESUMEN

Enhanced transient receptor potential canonical subtype 3 (TRPC3) expression and TRPC3-mediated calcium influx in monocytes from hypertensive rats and patients are associated with increased blood pressure. Daily salt intake is closely related to hypertension, but the relationship between TRPC3 expression and salt intake has not yet been evaluated in hypertensive patients. Using reverse transcription-polymerase chain reaction, we studied the expression of TRPC3 and TRPC3-related store-operated calcium entry (SOCE) in peripheral blood mononuclear cells (PBMCs) from hypertensive and normotensive control subjects. Measurement of SOCE was performed using the fluorescent dye Fura-2 AM. Participants were divided into a low-salt group (<9 g) and a high-salt group (≥9 g) based on 24-h urinary sodium excretion. Increased TRPC3 mRNA expression levels and SOCE were observed in THP-1 cells after high-NaCl treatment. However, administration of the TRPC3-specific inhibitor Pyr3 significantly decreased the effect. Furthermore, the TRPC3 mRNA expression levels in PBMCs from high-salt intake patients with essential hypertension were significantly higher than those in low-salt intake patients compared with those in normotensive control subjects. We also observed significantly increased TRPC3-mediated SOCE in PBMCs from hypertensive subjects (but not from normotensive control subjects), with calcium concentration correlating with salt intake. More importantly, TRPC3 mRNA levels showed a significant correlation with salt intake and systolic blood pressure in patients with essential hypertension. This study demonstrated, for the first time, that increased TRPC3 mRNA levels are associated with elevated salt intake and systolic blood pressure in hypertensive patients.


Asunto(s)
Presión Sanguínea/fisiología , Calcio/metabolismo , Hipertensión/metabolismo , Cloruro de Sodio Dietético/metabolismo , Canales Catiónicos TRPC/metabolismo , Adulto , Anciano , Femenino , Humanos , Hipertensión/genética , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Canales Catiónicos TRPC/genética
15.
Front Plant Sci ; 10: 288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930921

RESUMEN

As an elite rice variety cultivated in the third accumulative temperature belt in Heilongjiang province, China, Kongyu131 has many excellent traits, such as high quality, high stability, early maturation and cold resistance. However, as with other crop varieties, Kongyu131 has regional restrictions, exhibiting decreased yields when grown at low latitudes. To address these problems, two populations were constructed from cross between japonica and indica varieties. QTL analyses were performed with these two populations to detect regional adaptation related quantitative trait locus. Results in a BC1F6 backcross inbred line population with 168 lines derived from cross between Kongyu131 and GKMP showed a large pleiotropic QTL near 9 Mb on chromosome 7, which significantly delayed the HD of Kongyu131 and increased the plant height (PH), length of main panicle (LMP), number of primary branches (NPB) and grain number of main panicles (GNP). We also found a similar QTL in the population BC3F2 derived from Kongyu131 and GKLPL. Based on the QTL, we developed a gene module named mRA7 with 5 single-nucleotide polymorphism (SNP) markers around the QTL. Through a foreground and background selection based on 197 SNP markers evenly distributed over the 12 chromosomes, we obtained a new plant (a single point substitution line, SPSL) with a new Kongyu131 genome, carrying only a small chromosomal fragment less than 800 kb from GKLPL. The background recovery ratio of the SPSL was 99.8%. Compared with Kongyu131, the SPSL exhibited a significant HD delay of approximately 31 days and increased PH, LMP and GNP values when planted in Heilongjiang province. When cultivated in Guangdong province, HD of SPSL showed only 16 days delay, and less increase in PH, LMP and GNP than in Heilongjiang province. Phenotypic evaluation showed that the SPSL could be moved to south by more than 3 latitude units and cultivated in low-latitude regions. This study exemplifies the feasibility of expanding the regions of cultivation of elite rice varieties via similar methods.

16.
Chem Commun (Camb) ; 54(51): 6965-6974, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29809219

RESUMEN

The dominant charge transfer mechanism in a vast number of metal-organic frameworks (MOFs) is that of redox hopping, a process best explained through the motion of electrons via self-exchange reactions between redox centers coupled to the motion of counter-balancing ions. Mechanistic studies of redox hopping transport in MOFs reveal characteristics that recall pioneering studies in linear redox polymers. When MOFs are employed as electrocatalysts, consideration must be given to both the catalytic properties - turn-over frequency (TOF) and energetic requirements (overpotential, TON) - and the charge transport properties - rate of charge hopping, measured via an apparent diffusion coefficient (Dapp). Herein, we provide a mathematical framework to provide constraints to MOF catalyst development by relating Dapp, TOF, and film thickness in the context of providing 10 mA cm-2 of catalytic current. Lastly with the mechanistic studies discussed as a foundation, design rules for future MOF electrocatalysts are provided and the challenges to the community to optimize MOF charge transport are laid out.

17.
Dalton Trans ; 47(46): 16807-16812, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30431029

RESUMEN

Solid-state electrochemiluminescence (ECL) has drawn increasing attention due to its advantages over solution-phase ECL, such as reducing the consumption of expensive reagents and enhancing the ECL signal. Herein we report a ruthenium(ii)-polypyridyl doped zirconium(iv) metal-organic framework (MOF) film, UiO-67-Ru@FTO, for solid-state electrochemiluminescence. With tripropylamine (TPA) as a coreactant, UiO-67-Ru@FTO exhibited high ECL intensity and good stability. A linear relationship was found between the ECL intensity and TPA concentration in a wide range of 0.04-20 mM. Additionally, UiO-67-Ru@FTO was successfully used for dopamine detection, implying its great potential in real-life applications.

18.
Rice (N Y) ; 11(1): 21, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29637380

RESUMEN

BACKGROUND: Traditional crop breeding has made significant achievement meet food needs worldwide. However, the way has some inevitable problems including time-consuming, laborious, low predictability and reproducibility. In this study, we updated the GRAIN SIZE 3 (GS3) locus to improve the grain length of a major cultivate variety of Kongyu 131 at Heilongjiang Province, the northernmost region of China. High-resolution melting (HRM) analysis is used for single nucleotide polymorphism (SNP) genotyping. RESULTS: The improved line introgressed about 117 kb segment including gs3 allele from donor GKBR by using five SNP markers designed within and without GS3 locus, and the background recovery ratio of the recurrent parent genome is about 99.55% that are detected by 219 SNP markers evenly distributed on the 12 chromosomes. The field trial indicates that grain length, 100-grain weight and total grain weight per plant of the improved line raised by 12.05%, 16.30% and 4.47%, respectively, compared with Kongyu 131. CONCLUSIONS: This result demonstrates that update the GS3 locus is a feasible and efficient and accurate way can be applied to improve grain size of rice.

19.
ChemSusChem ; 11(2): 464-471, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29197150

RESUMEN

Investigation of chemical water oxidation was conducted on [Ru(tpy)(dcbpy)(OH2 )]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine)-doped UiO-67 metal-organic framework (MOF). The MOF catalyst exhibited a single-site reaction pathway with kinetic behavior similar to that of a homogeneous Ru complex. The reaction was first order with respect to both the concentration of the Ru catalyst and ceric ammonium nitrate (CAN), with kcat =3(±2)×10-3 m-1 s-1 in HNO3 (pH 0.5). The common degradation pathways of ligand dissociation and dimerization were precluded by MOF incorporation, which led to sustained catalysis and greater reusability as opposed to the molecular catalyst in homogeneous solution. Lastly, at the same loading (ca. 97 nmol mg-1 ), samples of different particle sizes generated the same amount of oxygen (ca. 100 nmol), indicative of in-MOF reactivity. The results suggest that the rate of redox-hopping charge transport is sufficient to promote chemistry throughout the MOF particulates.


Asunto(s)
Estructuras Metalorgánicas/química , Compuestos de Rutenio/química , Catálisis , Técnicas Electroquímicas/métodos , Electrones , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Tamaño de la Partícula , Termogravimetría , Agua/química
20.
Dalton Trans ; 46(15): 4917-4922, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28181621

RESUMEN

We report the photo-induced degradation of and cargo release from a nanoscale metal-organic framework (nMOF) incorporating photo-isomerizable 4,4'-azobenzenedicarboxylate (AZB) linkers. The structure matches a UiO-type framework where 12 4,4'-azobenzenedicarboxylate moieties are connected to a Zr6O4(OH)4 cluster, referred to as UiO-AZB. Due to the incorporation of photo-isomerizable struts, the degradation of UiO-AZB is accelerated by irradiation with white light (1.3 ± 0.1% h-1 under dark conditions vs. 8.4 ± 0.4% h-1 when irradiated). Additionally, we show slow release of Nile Red (NR) which is triggered by irradiation (0.04 ± 0.01% h-1 under dark conditions vs. 0.36 ± 0.02% h-1 when irradiated).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA