Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Pharm ; 14(12): 4353-4361, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29028357

RESUMEN

The folate receptor (FR) has been established as a promising target for imaging and therapy of cancer (FR-α), inflammation, and autoimmune diseases (FR-ß). Several folate based PET radiotracers have been reported in the literature, but an 18F-labeled folate-PET imaging agent with optimal properties for clinical translation is still lacking. In the present study, we report the design and preclinical evaluation of folate-PEG12-NOTA-Al18F (1), a new folate-PET agent with improved potential for clinical applications. Radiochemical synthesis of 1 was achieved via a one-pot labeling process by heating folate-PEG12-NOTA in the presence of in situ prepared Al18F for 15 min at 105 °C, followed by HPLC purification. Specific binding of 1 to FR was evaluated on homogenates of KB (FR-positive) and A549 (FR-deficient) tumor xenografts in the presence and absence of excess folate. In vivo tumor imaging with folate-PEG12-NOTA-Al18F was compared to imaging with 99mTc-EC20 using nu/nu mice bearing either KB or A549 tumor xenografts. Specific accumulation of 1 in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folate. Radiosynthesis of 1 was accomplished within ∼35 min, affording pure radiotracer 1 in 8.4 ± 1.3% (decay corrected) radiochemical yield with ∼100% radiochemical purity after HPLC purification and a specific activity of 35.8 ± 15.3 GBq/mmol. Further in vitro and in vivo examination of 1 demonstrated highly specific FR-mediated uptake in FR+ tumor, with Kd of ∼0.4 nM (KB), and reduced accumulation in liver. Given its facile preparation and improved properties, the new radiotracer, folate-PEG12-NOTA-Al18F (1), constitutes a promising tool for identification and classification of patients with FR overexpressing cancers.


Asunto(s)
Receptores de Folato Anclados a GPI/metabolismo , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Células A549 , Compuestos de Aluminio/química , Compuestos de Aluminio/farmacocinética , Animales , Evaluación Preclínica de Medicamentos , Femenino , Fluoruros/química , Fluoruros/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Ácido Fólico/farmacocinética , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética , Compuestos Heterocíclicos con 1 Anillo , Humanos , Marcaje Isotópico/métodos , Células KB , Ratones , Ratones Desnudos , Neoplasias/patología , Compuestos de Organotecnecio , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Radiofármacos/química , Distribución Tisular , Microtomografía por Rayos X/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Toxicol Pathol ; 45(5): 633-648, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28830331

RESUMEN

Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Metaloproteinasas de la Matriz/metabolismo , Imagen Óptica/métodos , Lesiones del Sistema Vascular/inducido químicamente , Lesiones del Sistema Vascular/diagnóstico por imagen , Animales , Biomarcadores/análisis , Perros , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Inmunohistoquímica , Masculino , Metaloproteinasas de la Matriz/química , Arterias Mesentéricas/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley
3.
Mol Pharm ; 13(5): 1520-7, 2016 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-27054811

RESUMEN

UNLABELLED: Folate-receptor-targeted PET radiotracers can potentially serve as versatile imaging agents for the diagnosis, staging, and prediction of response to therapy of patients with folate-receptor (FR)-expressing cancers. Because current FR-targeted PET reagents can be compromised by complex labeling procedures, low specific activities, poor radiochemical yields, or unwanted accumulation in FR negative tissues, we have undertaken to design an improved folate-PET agent that might be more amenable for clinical development. For this purpose, we have synthesized a folate-NOTA-Al(18)F radiotracer and examined its properties both in vitro and in vivo. METHODS: Radiochemical synthesis of folate-NOTA-Al(18)F was achieved by incubating (18)F(-) with AlCl3 for 2 min followed by heating in the presence of folate-NOTA for 15 min at 100 °C. Binding of folate-NOTA-Al(18)F to FR was quantitated in homogenates of KB and Cal51 tumor xenografts in the presence and absence of excess folic acid as a competitor. In vivo imaging was performed on nu/nu mice bearing either FR+ve (KB cell) or FR-ve (A549 cell) tumor xenografts, and specific accumulation of the radiotracer in tumor and other tissues was assessed by high-resolution micro-PET and ex vivo biodistribution in the presence and absence of excess folic acid. Image quality of folate-NOTA-Al(18)F was compared with that of (99m)Tc-EC20, a clinically established folate-targeted SPECT imaging agent. RESULTS: Total radiochemical synthesis and purification of folate-NOTA-Al(18)F was completed within 37 min, yielding a specific activity of 68.82 ± 18.5 GBq/µmol, radiochemical yield of 18.6 ± 4.5%, and radiochemical purity of 98.3 ± 2.9%. Analysis of FR binding revealed a Kd of ∼1.0 nM, and micro-PET imaging together with ex vivo biodistribution analyses demonstrated high FR-mediated uptake in an FR+ tumor and the kidneys. CONCLUSIONS: Folate-NOTA-Al(18)F constitutes an easily prepared FR-targeted PET imaging agent with improved radiopharmaceutical properties and high specificity for folate receptor expressing tumors. Given its improved properties over (99m)Tc-EC20 (i.e., higher resolution, shorter image acquisition time, etc.), we conclude that folate-NOTA-Al(18)F constitutes a viable alternative to (99m)Tc-EC20 for use in identification, diagnosis, and staging of patients with FR-expressing cancers.


Asunto(s)
Radioisótopos de Flúor/química , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/administración & dosificación , Ácido Fólico/química , Compuestos Heterocíclicos/química , Neoplasias/diagnóstico , Radiofármacos/química , Células A549 , Animales , Femenino , Compuestos Heterocíclicos con 1 Anillo , Humanos , Células KB , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Radioquímica/métodos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
4.
Mol Imaging ; 142015.
Artículo en Inglés | MEDLINE | ID: mdl-25773788

RESUMEN

Drug-induced vascular injury (DIVI), defined as arterial medial degeneration/necrosis usually associated with perivascular inflammation, is frequently observed in the mesenteric arteries of rats but the relevance to humans remains a hurdle for drug development. Here, we describe the evaluation of commercially available optical imaging biomarkers using a rat DIVI model. Male Sprague Dawley rats were administered 10 mg/kg/day of a proprietary soluble guanylate cyclase activator (sGCa). Optical agents, AngioSense for the detection of vessel permeability, MMPSense for the detection of activated matrix metalloproteinases (MMPs), and IntegriSense for the detection of αvß3 integrin, were injected via tail vein 24 hours before fluorescence (FL) ex vivo imaging. Imaging found a statistically significant difference in FL from all optical agents between treated and vehicle groups (p < .05). Mesenteric arteries were further analyzed by histopathology, flow cytometry, and immunohistochemistry. Histopathology confirmed perivascular inflammation and/or arterial medial degeneration in the sGCa-treated animals. Flow cytometry of digested arteries revealed myeloid cells as a main source of MMPSense signal. Immunohistochemical analysis further identified elevated MMP-9 expression within arterial walls and surrounding tissue of treated animals. Together, these data demonstrate that MMPSense and AngioSense are sensitive optical imaging biomarkers for the quantification of DIVI in rat mesenteric arteries.


Asunto(s)
Biomarcadores/química , Imagen Óptica , Enfermedades Vasculares/inducido químicamente , Animales , Citometría de Flujo , Proteínas Activadoras de la Guanilato-Ciclasa/química , Inmunohistoquímica , Integrina alfaVbeta3/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Arterias Mesentéricas/patología , Microscopía Fluorescente , Permeabilidad , Ratas , Ratas Sprague-Dawley , Enfermedades Vasculares/metabolismo
5.
Mediators Inflamm ; 2015: 264897, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26663988

RESUMEN

Chlamydia trachomatis is a bacterial sexually transmitted disease with over 1.3 million cases reported to the CDC in 2010. While Chlamydia infection is easily treated with antibiotics, up to 70% of infections are asymptomatic and go untreated. The current mouse model relies on invasive upper genital tract gross pathology readouts at ~60-80 days postinfection. High throughput optical imaging through the use of biomarkers has been successfully used to quickly evaluate several disease processes. Here we evaluate Neutrophil Elastase 680 (Elastase680) for its ability to measure Chlamydia muridarum associated inflammation in live mice using fluorescence molecular tomography (FMT) and In Vivo Imaging System (IVIS). Optical imaging was able to distinguish with statistical significance between vaccinated and nonvaccinated mice as well as mock-challenged and challenged mice 2 weeks after challenge which was 9 weeks sooner than typical gross pathological assessment. Immunohistochemistry confirmed the presence of neutrophils and correlated well with both in vivo and ex vivo imaging. In this report we demonstrate that Elastase680 can be used as a molecular imaging biomarker for inflammation associated with chlamydial infection in a mouse model and that these biomarkers can significantly decrease the time for pathology evaluation and thus increase the rate of therapeutics discovery.


Asunto(s)
Infecciones por Chlamydia/diagnóstico , Chlamydia muridarum , Inflamación/diagnóstico , Elastasa de Leucocito/análisis , Animales , Biomarcadores , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Vacunación
6.
Vaccine X ; 16: 100420, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192619

RESUMEN

Described here is the evaluation of a luciferase (luc) and respiratory syncytial virus (RSV) messenger RNA / lipid nanoparticle (mRNA/LNP) vaccine using a Needle-free Injection System, Tropis®, from PharmaJet® (Golden, Colorado USA). Needle-free jet delivery offers an alternative to needle/syringe. To perform this assessment, compatibility studies with Tropis were first performed with a luc mRNA/LNP and compared to needle/syringe. Although minor changes in particle size and encapsulation efficiency were observed when using Tropis on the benchtop, in vitro luciferase activity remained the same. Next, the luc mRNA/LNP was administered to rats intramuscularly using Tropis or needle/syringe and tracking of the injection and distribution was performed. Lastly, an mRNA encoding a prefusion-stabilized F protein from RSV was delivered intramuscularly using both Tropis and needle/syringe at 1 and 5 mcg mRNA. An equivalent IgG response was observed using both Tropis and needle/syringe. The cell mediated immune (CMI) response was also evaluated, and responses to RSV-F were detected from animals immunized with needle/syringe at all dose levels, and from the animals immunized with Tropis in the 5 and 25 ug groups. These results indicated that delivery of mRNA/LNPs with Tropis is a potential means of administration and an alternative to needle/syringe.

7.
Mol Imaging Biol ; 23(2): 241-249, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33098025

RESUMEN

PURPOSE: In vivo imaging of programmed death ligand 1 (PD-L1) during immunotherapy could potentially monitor changing PD-L1 expression and PD-L1 expression heterogeneity within and across tumors. Some protein constructs can be used for same-day positron emission tomography (PET) imaging. Previously, we evaluated the PD-L1-targeting Affibody molecule [18F]AlF-NOTA-ZPD-L1_1 as a PET tracer in a mouse tumor model of human PD-L1 expression. In this study, we evaluated the affinity-matured Affibody molecule ZPD-L1_4, to determine if improved affinity for PD-L1 resulted in increased in vivo targeting of PD-L1. PROCEDURES: ZPD-L1_4 was conjugated with NOTA and radiolabeled with either [18F]AlF or 68Ga. [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 were evaluated in immunocompromised mice with LOX (PD-L1+) and SUDHL6 (PD-L1-) tumors with PET and ex vivo biodistribution measurements. In addition, whole-body PET studies were performed in rhesus monkeys to predict human biodistribution in a model with tracer binding to endogenous PD-L1, and to calculate absorbed radiation doses. RESULTS: Ex vivo biodistribution measurements showed that both tracers had > 25 fold higher accumulation in LOX tumors than SUDHL6 ([18F]AlF-NOTA-ZPD-L1_4: LOX: 8.7 ± 0.7 %ID/g (N = 4) SUDHL6: 0.2 ± 0.01 %ID/g (N = 6), [68Ga]NOTA-ZPD-L1_4: LOX: 15.8 ± 1.0 %ID/g (N = 6) SUDHL6: 0.6 ± 0.1 %ID/g (N = 6)), considerably higher than ZPD-L1_1. In rhesus monkeys, both PET tracers showed fast clearance through kidneys and low background signal in the liver ([18F]AlF-NOTA-ZPD-L1_4: 1.26 ± 0.13 SUV, [68Ga]NOTA-ZPD-L1_4: 1.11 ± 0.06 SUV). PD-L1-expressing lymph nodes were visible in PET images, indicating in vivo PD-L1 targeting. Dosimetry estimates suggest that both PET tracers can be used for repeated clinical studies, although high kidney accumulation may limit allowable radioactive doses. CONCLUSIONS: [18F]AlF-NOTA-ZPD-L1_4 and [68Ga]NOTA-ZPD-L1_4 are promising candidates for same-day clinical PD-L1 PET imaging, warranting clinical evaluation. The ability to use either [18F] or [68Ga] may expand access to clinical sites.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiometría/métodos , Radiofármacos/farmacocinética , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Radioisótopos de Flúor , Radioisótopos de Galio , Humanos , Inmunoterapia/métodos , Macaca mulatta , Ratones , Imagen Molecular/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Radiofármacos/administración & dosificación , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Aging (Albany NY) ; 12(23): 23619-23646, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33196459

RESUMEN

Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1ß, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1ß- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Araquidónicos/farmacología , Cumarinas/farmacología , Indoles/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Quinolinas/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Stem Cells ; 25(10): 2677-84, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17628019

RESUMEN

Bone marrow mononuclear cell (BMMC) therapy shows promise as a treatment for ischemic heart disease. However, the ability to monitor long-term cell fate remains limited. We hypothesized that molecular imaging could be used to track stem cell homing and survival after myocardial ischemia-reperfusion (I/R) injury. We first harvested donor BMMCs from adult male L2G85 transgenic mice constitutively expressing both firefly luciferase (Fluc) and enhanced green fluorescence protein reporter gene. Fluorescence-activated cell sorting analysis revealed approximately 0.07% of the population to consist of classic hematopoietic stem cells (lin-, thy-int, c-kit+, Sca-1+). Afterward, adult female FVB recipients (n = 38) were randomized to sham surgery or acute I/R injury. Animals in the sham (n = 16) and I/R (n = 22) groups received 5 x 10(6) of the L2G85-derived BMMCs via tail vein injection. Bioluminescence imaging (BLI) was used to track cell migration and survival in vivo for 4 weeks. BLI showed preferential homing of BMMCs to hearts with I/R injury compared with sham hearts within the first week following cell injection. Ex vivo analysis of explanted hearts by histology confirmed BLI imaging results, and quantitative real-time polymerase chain reaction (for the male Sry gene) further demonstrated a greater number of BMMCs in hearts with I/R injury compared with the sham group. Functional evaluation by echocardiography demonstrated a trend toward improved left ventricular fractional shortening in animals receiving BMMCs. Taken together, these data demonstrate that molecular imaging can be used to successfully track BMMC therapy in murine models of heart disease. Specifically, we have demonstrated that systemically delivered BMMCs preferentially home to and are retained by injured myocardium. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Movimiento Celular , Proteínas Fluorescentes Verdes/análisis , Trasplante de Células Madre Hematopoyéticas , Luciferasas de Luciérnaga/análisis , Mediciones Luminiscentes , Daño por Reperfusión Miocárdica/terapia , Animales , Médula Ósea , Linaje de la Célula , Femenino , Genes Reporteros , Genes sry , Supervivencia de Injerto , Proteínas Fluorescentes Verdes/genética , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/citología , Inyecciones Intravenosas , Luciferasas de Luciérnaga/genética , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/patología , Distribución Aleatoria , Cola (estructura animal)/irrigación sanguínea , Ultrasonografía
10.
Vaccine ; 36(20): 2876-2885, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29599087

RESUMEN

Respiratory syncytial virus (RSV) is the most common viral cause of bronchiolitis and pneumonia in children twelve months of age or younger and a significant cause of lower respiratory disease in older adults. As various clinical and preclinical candidates advance, cotton rats (Sigmodon hispidus) and non-human primates (NHP) continue to play a valuable role in RSV vaccine development, since both animals are semi-permissive to human RSV (HRSV). However, appropriate utilization of the models is critical to avoid mis-interpretation of the preclinical findings. Using a multimodality imaging approach; a fluorescence based optical imaging technique for the cotton rat and a nuclear medicine based positron emission tomography (PET) imaging technique for monkeys, we demonstrate that many common practices for intranasal immunization in both species result in inoculum delivery to the lower respiratory tract, which can result in poor translation of outcomes from the preclinical to the clinical setting. Using these technologies we define a method to limit the distribution of intranasally administered vaccines solely to the upper airway of each species, which includes volume restrictions in combination with injectable anesthesia. We show using our newly defined methods for strict intranasal immunization that these methods impact the immune responses and efficacy observed when compared to vaccination methods resulting in distribution to both the upper and lower respiratory tracts. These data emphasize the importance of well-characterized immunization methods in the preclinical assessment of intranasally delivered vaccine candidates.


Asunto(s)
Administración Intranasal , Chlorocebus aethiops , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Sigmodontinae , Animales , Evaluación Preclínica de Medicamentos/métodos , Femenino , Modelos Animales
11.
J Nucl Med ; 58(11): 1852-1857, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28588151

RESUMEN

Programmed death ligand 1 (PD-L1) is an immune regulatory ligand that binds to the T-cell immune check point programmed death 1. Tumor expression of PD-L1 is correlated with immune suppression and poor prognosis. It is also correlated with therapeutic efficacy of programmed death 1 and PD-L1 inhibitors. In vivo imaging may enable real-time follow-up of changing PD-L1 expression and heterogeneity evaluation of PD-L1 expression across tumors in the same subject. We have radiolabeled the PD-L1-binding Affibody molecule NOTA-ZPD-L1_1 with 18F and evaluated its in vitro and in vivo binding affinity, targeting, and specificity. Methods: The affinity of the PD-L1-binding Affibody ligand ZPD-L1_1 was evaluated by surface plasmon resonance. Labeling was accomplished by maleimide coupling of NOTA to a unique cysteine residue and chelation of 18F-AlF. In vivo studies were performed in PD-L1-positive, PD-L1-negative, and mixed tumor-bearing severe combined immunodeficiency mice. Tracer was injected via the tail vein, and dynamic PET scans were acquired for 90 min, followed by γ-counting biodistribution. Immunohistochemical staining with an antibody specific for anti-PD-L1 (22C3) was used to evaluate the tumor distribution of PD-L1. Immunohistochemistry results were then compared with ex vivo autoradiographic images obtained from adjacent tissue sections. Results: NOTA-ZPD-L1_1 was labeled, with a radiochemical yield of 15.1% ± 5.6%, radiochemical purity of 96.7% ± 2.0%, and specific activity of 14.6 ± 6.5 GBq/µmol. Surface plasmon resonance showed a NOTA-conjugated ligand binding affinity of 1 nM. PET imaging demonstrated rapid uptake of tracer in the PD-L1-positive tumor, whereas the PD-L1-negative control tumor showed little tracer retention. Tracer clearance from most organs and blood was quick, with biodistribution showing prominent kidney retention, low liver uptake, and a significant difference between PD-L1-positive (percentage injected dose per gram [%ID/g] = 2.56 ± 0.33) and -negative (%ID/g = 0.32 ± 0.05) tumors (P = 0.0006). Ex vivo autoradiography showed excellent spatial correlation with immunohistochemistry in mixed tumors. Conclusion: Our results show that Affibody ligands can be effective at targeting tumor PD-L1 in vivo, with good specificity and rapid clearance. Future studies will explore methods to reduce kidney activity retention and further increase tumor uptake.


Asunto(s)
Antígeno B7-H1/metabolismo , Radioisótopos de Flúor , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Marcadores de Afinidad , Animales , Anticuerpos Monoclonales , Autorradiografía , Femenino , Radioisótopos de Flúor/farmacocinética , Humanos , Inmunohistoquímica , Marcaje Isotópico/métodos , Masculino , Ratones SCID , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo , Compuestos Organometálicos , Radiofármacos/farmacocinética , Resonancia por Plasmón de Superficie , Distribución Tisular
12.
PLoS One ; 9(9): e106693, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25198535

RESUMEN

BACKGROUND: Type 2 diabetes results from failure of the ß-cells to compensate for increased insulin demand due to abnormal levels of metabolic factors. The ob/ob(lep-/-) mouse has been extensively studied as an animal model of type 2 diabetes. Previous studies have shown a correlation between ß-cell function and bioluminescent imaging in lean genetically engineered mice. The ability to noninvasively monitor ß-cell function in ob/ob mice could provide new information on ß-cell regulation in type 2 diabetes. METHODS: To create the B6 Albino ob/ob MIP-luc mice (ob/ob-luc), the ob/ob mouse was crossed with the CD1 MIP-luc mouse. All mice were backcrossed over multiple generations to ensure the genetic background of the transgenic mice was over 96% similar to the background of the original ob/ob mouse. Animal weight, blood glucose levels, insulin in plasma, and in vivo bioluminescence (BLI) were monitored weekly or biweekly for up to 70 weeks of age. BL imaging was performed using IVIS Spectrum (Perkin Elmer) and calculated by integrating the bioluminescence signal between 5 and 10 min after i.v. injection of D-luciferin. Insulin immunohistochemistry determined islet beta cell count and insulin secretion assay determined islet insulin function. RESULTS: There were significant increases in BLI and insulin levels as the ob/ob-luc mice aged while glucose levels gradually decreased. Ob/ob-luc were sacrificed at different time points to determine ex vivo BLI, islet function and total ß-cell numbers using a cell counting training algorithm developed for the Vectra image analysis system (Perkin Elmer). The number of ß-cells increased as the mice aged and all three ex vivo measurements correlated with BLI. CONCLUSIONS: The ob/ob-luc mice can serve as a model of metabolic stress, similar to human type 2 diabetes using BLI as a surrogate marker for ß-cell function.


Asunto(s)
Hiperglucemia/fisiopatología , Islotes Pancreáticos/fisiopatología , Obesidad/fisiopatología , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Luminiscencia , Ratones
13.
Int J Mol Imaging ; 2012: 189254, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119157

RESUMEN

Inflammation as a core pathological event of atherosclerotic lesions is associated with the secretion of cathepsin proteases and the expression of α(v)ß(3) integrin. We employed fluorescence molecular tomographic (FMT) noninvasive imaging of these molecular activities using cathepsin sensing (ProSense, CatB FAST) and α(v)ß(3) integrin (IntegriSense) near-infrared fluorescence (NIRF) agents. A statistically significant increase in the ProSense and IntegriSense signal was observed within the chest region of apoE(-/-) mice (P < 0.05) versus C57BL/6 mice starting 25 and 22 weeks on high cholesterol diet, respectively. In a treatment study using ezetimibe (7 mg/kg), there was a statistically significant reduction in the ProSense and CatB FAST chest signal of treated (P < 0.05) versus untreated apoE(-/-) mice at 31 and 21 weeks on high cholesterol diet, respectively. The signal of ProSense and CatB FAST correlated with macrophage counts and was found associated with inflammatory cells by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report demonstrates that cathepsin and α(v)ß(3) integrin NIRF agents can be used as molecular imaging biomarkers for longitudinal detection of atherosclerosis, and cathepsin agents can monitor anti-inflammatory effects of ezetimibe with applications in preclinical testing of therapeutics and potentially for early diagnosis of atherosclerosis in patients.

14.
Mol Imaging Biol ; 12(5): 488-99, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19960268

RESUMEN

PURPOSE: Integrins, especially α(v)ß(3) and α(v)ß(5), are upregulated in tumor cells and activated endothelial cells and as such, serve as cancer biomarkers. We developed a novel near-infrared-labeled optical agent for the in vivo detection and quantification of α(v)ß(3)/α(v)ß(5). PROCEDURES: A small peptidomimetic α(v)ß(3) antagonist was synthesized, coupled to a near-infrared fluorescent (NIRF) dye, and tested for binding specificity using integrin-overexpressing cells, inhibition of vitronectin-mediated cell attachment, binding to tumor and endothelial cells in vitro, and competition studies. Pharmacokinetics, biodistribution, specificity of tumor targeting, and the effect of an antiangiogenic treatment were assessed in vivo. RESULTS: The integrin NIRF agent showed strong selectivity towards α(v)ß(3/)α(v)ß(5) in vitro and predominant tumor distribution in vivo, allowing noninvasive and real-time quantification of integrin signal in tumors. Antiangiogenic treatment significantly inhibited integrin signal in vivo but had no effect on a cathepsin-cleavable NIR agent. Simultaneous imaging revealed different patterns of distribution reflecting the underlying differences in integrin and cathepsin biology during tumor progression. CONCLUSIONS: NIRF-labeled integrin antagonists allow noninvasive molecular fluorescent imaging and quantification of tumors in vivo, improving and providing more refined approaches for cancer detection and treatment monitoring.


Asunto(s)
Antineoplásicos/farmacocinética , Integrinas/metabolismo , Péptido Hidrolasas/metabolismo , Tomografía/métodos , Animales , Western Blotting , Línea Celular Tumoral , Femenino , Fluorescencia , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Distribución Tisular , Trasplante Heterólogo
15.
Assay Drug Dev Technol ; 7(4): 391-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19689207

RESUMEN

beta-Galactosidase (beta-gal) (encoded by the lacZ gene) has been widely used as a transgene reporter enzyme. The ability to image lacZ expression in living transgenic animals would further extend the use of this reporter. It has been reported that 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)-beta-d-galactopyranoside (DDAOG), a conjugate of beta-galactose and 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one), is not only a chromogenic lacZ substrate but that the cleavage product has far-red fluorescence properties detectable by in vivo imaging. In an attempt to noninvasively image lacZ expression in vivo, we applied fluorescence imaging to a G protein-coupled receptor (GPR56), knockout (KO) mouse model, in which the lacZ gene is introduced in the GPR56 locus. Compared to wild-type (WT) mice, GPR56KO/LacZ mice showed three- to fourfold higher fluorescence intensity in the head area 5 min after tail-vein injection of DDAOG. beta-Gal staining in sections of whole brain showed strong lacZ expression in homozygotes, but not in WT mice, consistent with lacZ activity detected by in vivo imaging. The kidneys were also visualized with fluorescence imaging both in vivo and ex vivo, consistent with beta-gal staining findings. Our results demonstrate that fluorescence imaging can be used for in vivo real-time detection of lacZ activity by fluorescence imaging in lacZ transgenic mice. Thus, this technology can potentially be used to noninvasively image changes of certain endogenous molecules and/or molecular pathways in transgenic animals.


Asunto(s)
Expresión Génica/genética , Operón Lac/genética , Animales , Colorantes , Galactosidasas/química , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Fenotipo , Receptores Acoplados a Proteínas G/genética , Procesamiento de Señales Asistido por Computador , Transfección , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA