Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Cell Environ ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629794

RESUMEN

Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level, and consequently affecting the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.

2.
Ann Bot ; 130(5): 717-735, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35972226

RESUMEN

BACKGROUND AND AIMS: The North China Plain, the highest winter-wheat-producing region of China, is seriously threatened by drought. Traditional irrigation wastes a significant amount of water during the sowing season. Therefore, it is necessary to study the drought resistance of wheat during germination to maintain agricultural ecological security. From several main cultivars in the North China Plain, we screened the drought-resistant cultivar JM47 and drought-sensitive cultivar AK58 during germination using the polyethylene glycol (PEG) drought simulation method. An integrated analysis of the transcriptome and metabolomics was performed to understand the regulatory networks related to drought resistance in wheat germination and verify key regulatory genes. METHODS: Transcriptional and metabolic changes were investigated using statistical analyses and gene-metabolite correlation networks. Transcript and metabolite profiles were obtained through high-throughput RNA-sequencing data analysis and ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, respectively. KEY RESULTS: A total of 8083 and 2911 differentially expressed genes (DEGs) and 173 and 148 differential metabolites were identified in AK58 and JM47, respectively, under drought stress. According to the integrated analysis results, mammalian target of rapamycin (mTOR) signalling was prominently enriched in JM47. A decrease in α-linolenic acid content was consistent with the performance of DEGs involved in jasmonic acid biosynthesis in the two cultivars under drought stress. Abscisic acid (ABA) content decreased more in JM47 than in AK58, and linoleic acid content decreased in AK58 but increased in JM47. α-Tocotrienol was upregulated and strongly correlated with α-linolenic acid metabolism. CONCLUSIONS: The DEGs that participated in the mTOR and α-linolenic acid metabolism pathways were considered candidate DEGs related to drought resistance and the key metabolites α-tocotrienol, linoleic acid and l-leucine, which could trigger a comprehensive and systemic effect on drought resistance during germination by activating mTOR-ABA signalling and the interaction of various hormones.


Asunto(s)
Sequías , Triticum , Triticum/fisiología , Germinación , Transcriptoma , Ácido alfa-Linolénico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Linoleico/metabolismo , Metabolómica , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica
3.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886923

RESUMEN

Excessive input of nitrogen fertilizer not only causes a great waste of resources but brings about a series of ecological and environmental problems. Although Small Auxin Up-regulated RNAs (SAURs) participate in diverse biological processes, the function of SAURs in the nitrogen starvation response has not been well-studied. Here, we identified 308 TaSAURs in wheat and divided them into 10 subfamilies. The promoter regions of most TaSAURs contain hormone responsive elements, and their expression levels change under the treatment of different hormones, such as IAA, MeJA, and ABA. Interestingly, overexpression of one of the TaSAUR family members, a nitrogen starvation responsive gene, TaSAUR66-5B, can promote the growth of Arabidopsis and wheat roots. In addition, overexpression of TaSAUR66-5B in Arabidopsis up-regulates the expression levels of auxin biosynthesis related genes, suggesting that overexpression TaSAUR66-5B may promote root growth by increasing the biosynthesis of auxin. Furthermore, overexpression of TaSAUR66-5B in wheat can increase the biomass and grain yields of transgenic plants, as well as the nitrogen concentration and accumulation of both shoots and grains, especially under low nitrogen conditions. This study provides important genomic information of the TaSAUR gene family and lays a foundation for elucidating the functions of TaSAURs in improving nitrogen utilization efficiency in wheat.


Asunto(s)
Arabidopsis , Triticum , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Nitrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
4.
BMC Plant Biol ; 19(1): 193, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072347

RESUMEN

BACKGROUND: Wheat production is largely restricted by adverse environmental stresses. Under many undesirable conditions, endoplasmic reticulum (ER) stress can be induced. However, the physiological and molecular responses of wheat to ER stress remain poorly understood. We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using a combined approach of transcriptional profiling and morpho-physiological characterization. METHODS: To understand the mechanism of wheat response to ER stress, three wheat cultivars were used in our pre-experiments. Among them, the cultivar with a moderate stress tolerance, Yunong211 was used in the following experiments. We used DTT (7.5 mM) to induce ER stress and TUDCA (25 µg·mL- 1) to suppress the stress. Under three treatment groups (Control, DTT and DTT + TUDCA), we firstly monitored the morphological, physiological and cytological changes of wheat seedlings. Then we collected leaf samples from each group for RNA extraction, library construction and RNA sequencing on an Illumina Hiseq platform. The sequencing data was then validated by qRT-PCR. RESULTS: Morpho-physiological results showed DTT significantly reduced plant height and biomass, decreased contents of chlorophyll and water, increased electrolyte leakage rate and antioxidant enzymes activity, and accelerated the cell death ratio, whereas these changes were all remarkably alleviated after TUDCA co-treatment. Therefore, RNA sequencing was performed to determine the genes involved in regulating wheat response to stress. Transcriptomic analysis revealed that 8204 genes were differentially expressed in three treatment groups. Among these genes, 158 photosynthesis-related genes, 42 antioxidant enzyme genes, 318 plant hormone-related genes and 457 transcription factors (TFs) may play vital roles in regulating wheat response to ER stress. Based on the comprehensive analysis, we propose a hypothetical model to elucidate possible mechanisms of how plants adapt to environmental stresses. CONCLUSIONS: We identified several important genes that may play vital roles in wheat responding to ER stress. This work should lay the foundations of future studies in plant response to environmental stresses.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcriptoma/genética , Triticum/genética , Triticum/fisiología , Ditiotreitol/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Ácido Tauroquenodesoxicólico/farmacología , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos , Triticum/anatomía & histología
5.
Biol Res ; 52(1): 19, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947746

RESUMEN

BACKGROUND: Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS: LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS: Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS: The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , ARN/fisiología , Triticum/crecimiento & desarrollo , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Circular , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum/fisiología , Regulación hacia Arriba/fisiología
6.
Biol Res ; 52(1): 14, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30894225

RESUMEN

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Triticum/genética , Fenotipo , Fenómenos Fisiológicos de las Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico/fisiología , Triticum/metabolismo
7.
Biol Res ; 51(1): 43, 2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30390705

RESUMEN

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Nitrógeno/metabolismo , Raíces de Plantas/crecimiento & desarrollo , ARN/aislamiento & purificación , Estrés Fisiológico/fisiología , Triticum/crecimiento & desarrollo , ARN/metabolismo , ARN Circular , Triticum/fisiología
8.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545152

RESUMEN

Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.


Asunto(s)
Adaptación Fisiológica , Sequías , Silenciador del Gen , Proteínas de Plantas/metabolismo , Virus de Plantas/metabolismo , Proteómica/métodos , Triticum/metabolismo , Triticum/fisiología , Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Triticum/genética
9.
BMC Plant Biol ; 15: 21, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623724

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the processes of plant growth and development, but little is known of their functions during dehydration stress in wheat. Moreover, the mechanisms by which miRNAs confer different levels of dehydration stress tolerance in different wheat genotypes are unclear. RESULTS: We examined miRNA expressions in two different wheat genotypes, Hanxuan10, which is drought-tolerant, and Zhengyin1, which is drought-susceptible. Using a deep-sequencing method, we identified 367 differentially expressed miRNAs (including 46 conserved miRNAs and 321 novel miRNAs) and compared their expression levels in the two genotypes. Among them, 233 miRNAs were upregulated and 10 were downregulated in both wheat genotypes after dehydration stress. Interestingly, 13 miRNAs exhibited opposite patterns of expression in the two wheat genotypes, downregulation in the drought-tolerant cultivar and upregulation in the drought-susceptible cultivar. We also identified 111 miRNAs that were expressed predominantly in only one or the other genotype after dehydration stress. We verified the expression patterns of a number of representative miRNAs using qPCR analysis and northern blot, which produced results consistent with those of the deep-sequencing method. Moreover, monitoring the expression levels of 10 target genes by qPCR analysis revealed negative correlations with the levels of their corresponding miRNAs. CONCLUSIONS: These results indicate that differentially expressed patterns of miRNAs between these two genotypes may play important roles in dehydration stress tolerance in wheat and may be a key factor in determining the levels of stress tolerance in different wheat genotypes.


Asunto(s)
Desecación , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Triticum/fisiología , China , Sequías , Genotipo , MicroARNs/metabolismo , Estructura Secundaria de Proteína , Estrés Fisiológico , Triticum/genética
10.
Plants (Basel) ; 9(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316652

RESUMEN

Metabolomics is an effective biotechnological tool that can be used to attain comprehensive information on metabolites. In this study, the profiles of metabolites produced by wheat seedlings in response to drought stress were investigated using an untargeted approach with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to determine various physiological processes related to drought tolerance from the cross between drought-tolerant genotype (HX10) and drought-sensitive genotype (YN211). The current study results showed that under drought stress, HX10 exhibited higher growth indices than YN211. After drought stress treatment, a series of phenolics accumulated higher in HX10 than in YN211, whereas the amount of thymine, a pyrimidine, is almost 13 folds of that in YN211. These metabolites, as well as high levels of different amino acids, alkaloids, organic acids, and flavonoids in the drought treated HX10 could help to explain its strong drought-tolerant capacity. The current study explored the understanding of the mechanisms involved in the drought response of wheat seedling; these metabolome data could also be used for potential QTL or GWAS studies to identify locus (loci) or gene(s) associated with these metabolic traits for the crop improvement.

11.
Tree Physiol ; 39(10): 1767-1782, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274163

RESUMEN

Photoprotection strategies in a Pinus halepensis Mill. forest at the dry timberline that shows sustained photosynthetic activity during 6-7 month summer drought were characterized and quantified under field conditions. Measurements of chlorophyll fluorescence, leaf-level gas exchange and pigment concentrations were made in both control and summer-irrigated plots, providing the opportunity to separate the effects of atmospheric from soil water stress on the photoprotection responses. The proportion of light energy incident on the leaf surface ultimately being used for carbon assimilation was 18% under stress-free conditions (irrigated, winter), declining to 4% under maximal stress (control, summer). Allocation of absorbed light energy to photochemistry decreased from 25 to 15% (control) and from 50% to 30% (irrigated) between winter and summer, highlighting the important role of pigment-mediated energy dissipation processes. Photorespiration or other non-assimilatory electron flow accounted for 15-20% and ~10% of incident light energy during periods of high and low carbon fixation, respectively, representing a proportional increase in photochemical energy going to photorespiration in summer but a decrease in the absolute amount of photorespiratory CO2 loss. Resilience of the leaf photochemical apparatus was expressed in the complete recovery of photosystem II (PSII) efficiency (ΦPSII) and relaxation of the xanthophyll de-epoxidation state on the diurnal cycle throughout the year, and no seasonal decrease in pre-dawn maximal PSII efficiency (Fv/Fm). The response of CO2 assimilation and photoprotection strategies to stomatal conductance and leaf water potential appeared independent of whether stress was due to atmospheric or soil water deficits across seasons and treatments. The range of protection characteristics identified provides insights into the relatively high carbon economy under these dry conditions, conditions that are predicted for extended areas in the Mediterranean and other regions due to global climate change.


Asunto(s)
Sequías , Pinus , Clorofila , Bosques , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta , Estaciones del Año
12.
Sci Rep ; 9(1): 11741, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409818

RESUMEN

Plant roots are vital for acquiring nutrients and water from soil. However, the mechanisms regulating root growth in hexaploid wheat remain to be elucidated. Here, an integrated comparative proteome study on the roots of two varieties and their descendants with contrasting root phenotypes was performed. A total of 80 differentially expressed proteins (DEPs) associated with the regulation of primary root growth were identified, including two plant steroid biosynthesis related proteins and nine class III peroxidases. Real-time PCR analysis showed that brassinosteroid (BR) biosynthesis pathway was significantly elevated in long-root plants compared with those short-root plants. Moreover, O2.- and H2O2 were distributed abundantly in both the root meristematic and elongation zones of long root plants, but only in the meristematic zone of short-root plants. The differential distribution of reactive oxygen species (ROS) in the root tips of different genotypes may be caused by the differential expression of peroxidases. Taken together, our results suggest that the regulation of wheat primary root growth is closely related to BR biosynthesis pathway and BR-mediated ROS distribution.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteoma , Proteómica , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Brasinoesteroides/biosíntesis , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Peróxido de Hidrógeno/metabolismo , Fenotipo , Raíces de Plantas/genética , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Triticum/genética
13.
Front Plant Sci ; 10: 151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842781

RESUMEN

Nitrogen deficient environments can promote wheat primary root growth (PRG) that allows for nitrogen uptake in deep soil. However, the mechanisms of low nitrogen-promoted root growth remain largely unknown. Here, an integrated comparative proteome study using iTRAQ analysis on the roots of two wheat varieties and their descendants with contrasting response to low nitrogen (LN) stress was performed under control (CK) and LN conditions. In total, 84 differentially abundant proteins (DAPs) specifically involved in the process of LN-promoted PRG were identified and 11 pathways were significantly enriched. The Glutathione metabolism, endocytosis, lipid metabolism, and phenylpropanoid biosynthesis pathways may play crucial roles in the regulation of LN-promoted PRG. We also identified 59 DAPs involved in the common response to LN stress in different genetic backgrounds. The common responsive DAPs to LN stress were mainly involved in nitrogen uptake, transportation and remobilization, and LN stress tolerance. Taken together, our results provide new insights into the metabolic and molecular changes taking place in contrasting varieties under LN conditions, which provide useful information for the genetic improvement of root traits and nitrogen use efficiency in wheat.

14.
New Phytol ; 178(3): 603-16, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18331428

RESUMEN

This study explored possible advantages conferred by the phase shift between leaf phenology and photosynthesis seasonality in a semi-arid Pinus halepensis forest system, not seen in temperate sites. Leaf-scale measurements of gas exchange, nitrogen and phenology were used on daily, seasonal and annual time-scales. Peak photosynthesis was in late winter, when high soil moisture, mild temperatures and low leaf vapour pressure deficit (D(L)) allowed high rates associated with high water- and nitrogen-use efficiencies. Self-sustained new needle growth through the dry and hot summer maximized photosynthesis in the following wet season, without straining carbon storage. Low rates of water loss were associated with increasing sensitivity of stomatal conductance (g(s)) to soil moisture below a relative extractable water (REW) of 0.4, and decreased g(s )sensitivity to D(L) below REW of approx. 0.2. This response was captured by the modified Ball-Berry (Leuning) model. While most physiological parameters and responses measured were typical of temperate pines, the photosynthesis-phenological phasing contributed to high productivity under warm-dry conditions. This contrasts with reported effects of short-term periodical droughts and could lead to different predictions of the effect of warming and drying climate on pine forest productivity.


Asunto(s)
Ecosistema , Pinus/fisiología , Árboles/fisiología , Agua , Nitrógeno/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transpiración de Plantas , Estaciones del Año , Suelo/análisis , Factores de Tiempo
15.
Front Plant Sci ; 8: 667, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28515732

RESUMEN

Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress-induced cell death probably by regulating endoplasmic reticulum (ER) stress-related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress-related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress-related plant osmotic stress resistance.

16.
Biol. Res ; 52: 19, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1011421

RESUMEN

BACKGROUND: Recent studies indicate that circular RNAs (circRNAs) may play important roles in the regulation of plant growth and development. Plant roots are the main organs of nutrient and water uptake. However, whether circRNAs involved in the regulation of plant root growth remains to be elucidated. METHODS: LH9, XN979 and YN29 are three Chinese wheat varieties with contrasting root lengths. Here, the root circRNA expression profiles of LH9, XN979 and YN29 were examined by using high-throughput sequencing technology. RESULTS: Thirty-three and twenty-two differentially expressed circRNAs (DECs) were identified in the YN29-LH9 comparison and YN29-XN979 comparison, respectively. Among them, ten DECs coexisted in both comparisons. As the roots of both LH9 and XN979 were significantly larger and deeper than YN29, the ten DECs coexisting in the two comparisons were highly likely to be involved in the regulation of wheat root length. Moreover, three of the ten DECs have potential miRNA binding sites. Real-time PCR analysis showed that the expression levels of the potential binding miRNAs exhibited significant differences between the long root plants and the short root plants. CONCLUSIONS: The expression levels of some circRNAs exhibited significant differences in wheat varieties with contrasting root phenotypes. Ten DECs involved in the regulation of wheat root length were successfully identified in which three of them have potential miRNAs binding sites. The expression levels of putative circRNA-binding miRNAs were correlated with their corresponding circRNAs. Our results provide new clues for studying the potential roles of circRNAs in the regulation of wheat root length.


Asunto(s)
Triticum/crecimiento & desarrollo , ARN/fisiología , Raíces de Plantas/crecimiento & desarrollo , Triticum/fisiología , Regulación hacia Abajo/fisiología , Regulación hacia Arriba/fisiología , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Circular
17.
Biol. Res ; 52: 14, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1011416

RESUMEN

BACKGROUND: Drought is a major abiotic stress affecting global wheat (Triticum aestivum L.) production. Exploration of drought-tolerant genes is essential for the genetic improvement of drought tolerance in wheat. Previous studies have shown that some histone encoding genes are involved in plant drought tolerance. However, whether the H2B family genes are involved in drought stress response remains unclear. METHODS: Here, we identified a wheat histone H2B family gene, TaH2B-7D, which was significantly up-regulated under drought stress conditions. Virus-induced gene silencing (VIGS) technology was used to further verify the function of TaH2B-7D in wheat drought tolerance. The phenotypic and physiological changes were examined in the TaH2B-7D knock-down plants. RESULTS: In the TaH2B-7D knock-down plants, relative electrolyte leakage rate and malonaldehyde (MDA) content significantly increased, while relative water content (RWC) and proline content significantly decreased compared with those in the non-knocked-down plants under drought stress conditions. TaH2B-7D knock-down plants exhibited severe sagging, wilting and dwarf phenotypes under drought stress conditions, but not in the non-knocked-down plants, suggesting that the former were more sensitive to drought stress. CONCLUSION: These results indicate that TaH2B-7D potentially plays a vital role in conferring drought tolerance in wheat.


Asunto(s)
Proteínas de Plantas/genética , Estrés Fisiológico/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Sequías , Fenotipo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Triticum/metabolismo , Plantas Modificadas Genéticamente/genética , Fenómenos Fisiológicos de las Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Ciênc. rural (Online) ; 48(3): e20170446, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1045081

RESUMEN

ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411). Values of wheat seedling traits including maximum root length (MRL), root dry weight (RDW), shoot dry weight (SDW), total dry weight (TDW) and the ratio of TDW of wheat plants between salt stress and control (TDWR) were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.


RESUMO: A salinidade do solo limita a produção agrícola. O trigo mole é uma das culturas mais importantes com característica allohexaploid e genoma altamente complexo. O mapeamento QTL é uma maneira muito útil de identificar genes para traços quantitativos, como a tolerância à salinidade em trigo hexaplóide. No presente estudo realizou-se um ensaio hidropónico para identificar locos de traços quantitativos (QTLs) associados à tolerância à salinidade do trigo sob concentração de NaCl 150 mM, usando uma população de linhagem consanguíneo recombinante (Xiaoyan 54 × Jing 411). Os valores dos traços de mudas de trigo, incluindo comprimento máximo da raiz (MRL), peso seco da raiz (RDW), ponha o peso seco (SDW), peso seco total (TDW) e a proporção das plantas de trigo TDW entre o estresse salgado e o controle (TDWR), foram avaliados ou calculados. Um total de 19QTLs para cinco traços foram detectados através do método de mapeamento de intervalo composto usando a versão 2.5 do cartógrafo QTL sob condições normais e de estresse salino. Estes QTLs distribuídos em 12 cromossomos explicaram a porcentagem de variação fenotípica por QTL individual variando de 7,9% a 19,0%. Entre eles, foram detectados 11 e 6 QTLs em condições de estresse normal e sal, respectivamente, e dois QTLs foram detectados para TDWR. Cromossoma 1A, 3A e 7A podem conter genes que são candidatos cruciais associados à tolerância ao sal de trigo. Nossos resultados seriam úteis para a seleção assistida por marcadores para produzir variedades de trigo com tolerância salina melhorada.

19.
Biol. Res ; 51: 43, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-983944

RESUMEN

BACKGROUND: CircRNAs are widespread in plants and play important roles in response to abiotic stresses. Low nitrogen (LN) promotes the growth of plant root system, allowing it to explore more nitrogen. However, whether circRNAs involved in the response to LN stress and the regulation of LN-promoted root growth in wheat remains unclear. METHODS: Two wheat varieties (LH9 and XN979) with contrasting root phenotypes to LN stress were used as materials to identify circRNAs under control and LN conditions by using high-throughput sequencing technology. RESULTS: Six differentially expressed circRNAs (DECs) involved in the common response to LN stress and 23 DECs involved in the regulation of LN-promoted root growth were successfully identified. GO analysis of the DEC-host genes involved in the regulation of LN-promoted root growth showed that GO terms related to biological regulation, responses to stimuli and signalling were significantly enriched. Moreover, seven DECs were predicted to have miRNA binding sites and may serve as miRNA sponges to capture miRNAs from their target genes. CONCLUSIONS: LN stress altered the expression profiles of circRNAs in wheat. This is the first report of LN stress responsive circRNAs in plants. Our results provided new clues for investigating the functions of circRNAs in response to LN stress and in the regulation of LN-promoted wheat root growth.


Asunto(s)
Estrés Fisiológico/fisiología , Triticum/crecimiento & desarrollo , ARN/aislamiento & purificación , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Nitrógeno/metabolismo , Triticum/fisiología , ARN/metabolismo , ARN Circular
20.
Ying Yong Sheng Tai Xue Bao ; 20(10): 2406-10, 2009 Oct.
Artículo en Zh | MEDLINE | ID: mdl-20077697

RESUMEN

Taking wheat cultivars drought-resistant Luohan-6 and drought-sensitive Zhoumai-18 as test objects, their seedlings ammonium assimilation enzyme activities and related parameters were determined under osmotic stress. The plant biomass had an obvious decrease under osmotic stress, with a larger decrement for Zhoumai-18 than Luohan-6. Osmotic stress increased the plant ammonium content, especially for Zhoumai-18. The glutamine synthetase (GS) activity varied with wheat cultivars. For Luohan-6, the GS activity increased significantly under low osmotic stress but decreased under high osmotic stress; while for Zhoumai-18, the GS activity decreased with increasing osmotic stress. The NADH-dependent glutamate dehydrogenase (NADH-GDH) increased with increasing osmotic stress, with a marked increment under low osmotic stress for Zhoumai-18, and under high osmotic stress for Luohan-6. The NAD(+)-dependent glutamate dehydrogenase (NAD(+)-GDH) and NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activities also increased with increasing osmotic stress, with a greater increment of NAD(+)-GDH activity for Zhoumai-18, and of NADP-ICDH activity for Luohan-6. It was suggested that the increased drought resistance of wheat plants could be related to the increased ammonium assimilation resulted from the enhanced GS and NADH-GDH activities under low and high osmotic stress, respectively.


Asunto(s)
Sequías , Compuestos de Amonio Cuaternario/metabolismo , Plantones/metabolismo , Estrés Fisiológico , Triticum/metabolismo , Agricultura/métodos , Deshidratación/genética , Presión Osmótica , Plantones/genética , Plantones/crecimiento & desarrollo , Triticum/genética , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA