RESUMEN
Constructing a globally consistent high-precision map is essential for the application of mobile robots. Existing optimization-based mapping methods typically constrain robot states in pose space during the graph optimization process, without directly optimizing the structure of the scene, thereby causing the map to be inconsistent. To address the above issues, this paper presents a three-dimensional (3D) LiDAR mapping framework (i.e., BA-CLM) based on LiDAR bundle adjustment (LBA) cost factors. We propose a multivariate LBA cost factor, which is built from a multi-resolution voxel map, to uniformly constrain the robot poses within a submap. The framework proposed in this paper applies the LBA cost factors for both local and global map optimization. Experimental results on several public 3D LiDAR datasets and a self-collected 32-line LiDAR dataset demonstrate that the proposed method achieves accurate trajectory estimation and consistent mapping.
RESUMEN
Visual-inertial odometry (VIO) algorithms, fusing various features such as points and lines, are able to improve their performance in challenging scenes while the running time severely increases. In this paper, we propose a novel lightweight point-line visual-inertial odometry algorithm to solve this problem, called LRPL-VIO. Firstly, a fast line matching method is proposed based on the assumption that the photometric values of endpoints and midpoints are invariant between consecutive frames, which greatly reduces the time consumption of the front end. Then, an efficient filter-based state estimation framework is designed to finish information fusion (point, line, and inertial). Fresh measurements of line features with good tracking quality are selected for state estimation using a unique feature selection scheme, which improves the efficiency of the proposed algorithm. Finally, validation experiments are conducted on public datasets and in real-world tests to evaluate the performance of LRPL-VIO and the results show that we outperform other state-of-the-art algorithms especially in terms of speed and robustness.