Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
New Phytol ; 244(4): 1143-1167, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39267260

RESUMEN

Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.


Asunto(s)
Eucalyptus , Lignina , Populus , Populus/metabolismo , Eucalyptus/metabolismo , Lignina/biosíntesis , Lignina/metabolismo , Vías Biosintéticas
2.
Arch Pharm (Weinheim) ; 357(5): e2300435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314850

RESUMEN

Phenotypic drug discovery (PDD) is an effective drug discovery approach by observation of therapeutic effects on disease phenotypes, especially in complex disease systems. Triple-negative breast cancer (TNBC) is composed of several complex disease features, including high tumor heterogeneity, high invasive and metastatic potential, and a lack of effective therapeutic targets. Therefore, identifying effective and novel agents through PDD is a current trend in TNBC drug development. In this study, 23 novel small molecules were synthesized using 4-(phenylsulfonyl)morpholine as a pharmacophore. Among these derivatives, GL24 (4m) exhibited the lowest half-maximal inhibitory concentration value (0.90 µM) in MDA-MB-231 cells. To investigate the tumor-suppressive mechanisms of GL24, transcriptomic analyses were used to detect the perturbation for gene expression upon GL24 treatment. Followed by gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, multiple ER stress-dependent tumor suppressive signals were identified, such as unfolded protein response (UPR), p53 pathway, G2/M checkpoint, and E2F targets. Most of the identified pathways triggered by GL24 eventually led to cell-cycle arrest and then to apoptosis. In summary, we developed a novel 4-(phenylsulfonyl)morpholine derivative GL24 with a strong potential for inhibiting TNBC cell growth through ER stress-dependent tumor suppressive signals.


Asunto(s)
Antineoplásicos , Morfolinas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Morfolinas/farmacología , Morfolinas/síntesis química , Morfolinas/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estructura Molecular
3.
Genome Res ; 29(8): 1343-1351, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31186303

RESUMEN

Eukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA cis targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis. The system has a transcription factor-DNA interaction discovery rate twice as high as the conventional diploid-mating approach and a processing time nearly one-tenth of the haploid-transformation method. The system also offers the highest accuracy in identifying TF-DNA interactions that can be authenticated in vivo by chromatin immunoprecipitation. With these unique features, this meiosis-directed Y1H system is particularly suited for constructing novel and comprehensive genome-scale gene regulatory networks for various organisms.


Asunto(s)
ADN/genética , Análisis por Micromatrices/métodos , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos , Animales , ADN/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Meiosis , Análisis por Micromatrices/instrumentación , Plásmidos/química , Plásmidos/metabolismo , Ploidias , Populus/citología , Unión Proteica , Protoplastos/citología , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 186(1): 250-269, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33793955

RESUMEN

Tension wood (TW) is a specialized xylem tissue developed under mechanical/tension stress in angiosperm trees. TW development involves transregulation of secondary cell wall genes, which leads to altered wood properties for stress adaptation. We induced TW in the stems of black cottonwood (Populus trichocarpa, Nisqually-1) and identified two significantly repressed transcription factor (TF) genes: class B3 heat-shock TF (HSFB3-1) and MYB092. Transcriptomic analysis and chromatin immunoprecipitation (ChIP) were used to identify direct TF-DNA interactions in P. trichocarpa xylem protoplasts overexpressing the TFs. This analysis established a transcriptional regulatory network in which PtrHSFB3-1 and PtrMYB092 directly activate 8 and 11 monolignol genes, respectively. The TF-DNA interactions were verified for their specificity and transactivator roles in 35 independent CRISPR-based biallelic mutants and overexpression transgenic lines of PtrHSFB3-1 and PtrMYB092 in P. trichocarpa. The gene-edited trees (mimicking the repressed PtrHSFB3-1 and PtrMYB092 under tension stress) have stem wood composition resembling that of TW during normal growth and under tension stress (i.e., low lignin and high cellulose), whereas the overexpressors showed an opposite effect (high lignin and low cellulose). Individual overexpression of the TFs impeded lignin reduction under tension stress and restored high levels of lignin biosynthesis in the TW. This study offers biological insights to further uncover how metabolism, growth, and stress adaptation are coordinately regulated in trees.


Asunto(s)
Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Populus/genética , Madera/metabolismo , Xilema/metabolismo , Populus/anatomía & histología , Transcripción Genética , Madera/genética
5.
Plant Cell ; 31(3): 602-626, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30755461

RESUMEN

Wood remains the world's most abundant and renewable resource for timber and pulp and is an alternative to fossil fuels. Understanding the molecular regulation of wood formation can advance the engineering of wood for more efficient material and energy productions. We integrated a black cottonwood (Populus trichocarpa) wood-forming cell system with quantitative transcriptomics and chromatin binding assays to construct a transcriptional regulatory network (TRN) directed by a key transcription factor (TF), PtrSND1-B1 (secondary wall-associated NAC-domain protein). The network consists of four layers of TF-target gene interactions with quantitative regulatory effects, describing the specificity of how the regulation is transduced through these interactions to activate cell wall genes (effector genes) for wood formation. PtrSND1-B1 directs 57 TF-DNA interactions through 17 TFs transregulating 27 effector genes. Of the 57 interactions, 55 are novel. We tested 42 of these 57 interactions in 30 genotypes of transgenic P. trichocarpa and verified that ∼90% of the tested interactions function in vivo. The TRN reveals common transregulatory targets for distinct TFs, leading to the discovery of nine TF protein complexes (dimers and trimers) implicated in regulating the biosynthesis of specific types of lignin. Our work suggests that wood formation may involve regulatory homeostasis determined by combinations of TF-DNA and TF-TF (protein-protein) regulations.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Populus/genética , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Cromatina/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/crecimiento & desarrollo , Populus/fisiología , Factores de Transcripción/genética , Madera/crecimiento & desarrollo
6.
Plant Cell ; 31(3): 663-686, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30538157

RESUMEN

Plants develop tolerance to drought by activating genes with altered levels of epigenetic modifications. Specific transcription factors are involved in this activation, but the molecular connections within the regulatory system are unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment and examined its association with transcriptomes in Populus trichocarpa under drought stress. We revealed that abscisic acid-Responsive Element (ABRE) motifs in promoters of the drought-responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 are involved in H3K9ac enhancement and activation of these genes. Overexpressing these PtrNAC genes in P trichocarpa resulted in strong drought-tolerance phenotypes. We showed that the ABRE binding protein PtrAREB1-2 binds to ABRE motifs associated with these PtrNAC genes and recruits the histone acetyltransferase unit ADA2b-GCN5, forming AREB1-ADA2b-GCN5 ternary protein complexes. Moreover, this recruitment enables GCN5-mediated histone acetylation to enhance H3K9ac and enrich RNA polymerase II specifically at these PtrNAC genes for the development of drought tolerance. CRISPR editing or RNA interference-mediated downregulation of any of the ternary members results in highly drought-sensitive P trichocarpa Thus, the combinatorial function of the ternary proteins establishes a coordinated histone acetylation and transcription factor-mediated gene activation for drought response and tolerance in Populus species.


Asunto(s)
Ácido Abscísico/metabolismo , Histonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Populus/genética , Procesamiento Proteico-Postraduccional , Acetilación , Sequías , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Motivos de Nucleótidos , Fenotipo , Proteínas de Plantas/genética , Populus/fisiología , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
7.
BMC Biol ; 19(1): 214, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34560855

RESUMEN

BACKGROUND: Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation. RESULTS: We developed a new tool named GateMultiplex with high computing performance using C++. GateMultiplex incorporated a graphical user interface (GUI), which allows the operation without any programming skills. Flexible parameter options were designed for multiple experimental purposes to enable the application of GateMultiplex even beyond Y1H platforms. We further demonstrated the data analysis from other three fields using GateMultiplex, the identification of lead compounds in preclinical cancer drug discovery, the crop line selection in precision agriculture, and the ocean pollution detection from deep-sea fishery. CONCLUSIONS: The user-friendly GUI, fast C++ computing speed, flexible parameter setting, and applicability of GateMultiplex facilitate the feasibility of large-scale data analysis in life science fields.


Asunto(s)
Saccharomyces cerevisiae , Análisis de Datos , Redes Reguladoras de Genes , Robótica , Saccharomyces cerevisiae/genética , Programas Informáticos
8.
Plant Physiol ; 184(3): 1389-1406, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943464

RESUMEN

Wood formation is a complex process that involves cell differentiation, cell expansion, secondary wall deposition, and programmed cell death. We constructed a four-layer wood formation transcriptional regulatory network (TRN) in Populus trichocarpa (black cottonwood) that has four Secondary wall-associated NAC-Domain1 (PtrSND1) transcription factor (TF) family members as the top-layer regulators. We characterized the function of a MYB (PtrMYB161) TF in this PtrSND1-TRN, using transgenic P trichocarpa cells and whole plants. PtrMYB161 is a third-layer regulator that directly transactivates five wood formation genes. Overexpression of PtrMYB161 in P. trichocarpa (OE-PtrMYB161) led to reduced wood, altered cell type proportions, and inhibited growth. Integrative analysis of wood cell-based chromatin-binding assays with OE-PtrMYB161 transcriptomics revealed a feedback regulation system in the PtrSND1-TRN, where PtrMYB161 represses all four top-layer regulators and one second-layer regulator, PtrMYB021, possibly affecting many downstream TFs in, and likely beyond, the TRN, to generate the observed phenotypic changes. Our data also suggested that the PtrMYB161's repressor function operates through interaction of the base PtrMYB161 target-binding system with gene-silencing cofactors. PtrMYB161 protein does not contain any known negative regulatory domains. CRISPR-based mutants of PtrMYB161 in P. trichocarpa exhibited phenotypes similar to the wild type, suggesting that PtrMYB161's activator functions are redundant among many TFs. Our work demonstrated that PtrMYB161 binds to multiple sets of target genes, a feature that allows it to function as an activator as well as a repressor. The balance of the two functions may be important to the establishment of regulatory homeostasis for normal growth and development.


Asunto(s)
Aumento de la Célula , Proliferación Celular , Populus/crecimiento & desarrollo , Populus/genética , Populus/metabolismo , Factores de Transcripción/metabolismo , Madera/crecimiento & desarrollo , Xilema/metabolismo , Pared Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
9.
Proc Natl Acad Sci U S A ; 114(45): E9722-E9729, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078399

RESUMEN

Secondary cell wall (SCW) biosynthesis is the biological process that generates wood, an important renewable feedstock for materials and energy. NAC domain transcription factors, particularly Vascular-Related NAC-Domain (VND) and Secondary Wall-Associated NAC Domain (SND) proteins, are known to regulate SCW differentiation. The regulation of VND and SND is important to maintain homeostasis for plants to avoid abnormal growth and development. We previously identified a splice variant, PtrSND1-A2IR , derived from PtrSND1-A2 as a dominant-negative regulator, which suppresses the transactivation of all PtrSND1 family members. PtrSND1-A2IR also suppresses the self-activation of the PtrSND1 family members except for its cognate transcription factor, PtrSND1-A2, suggesting the existence of an unknown factor needed to regulate PtrSND1-A2 Here, a splice variant, PtrVND6-C1IR , derived from PtrVND6-C1 was discovered that suppresses the protein functions of all PtrVND6 family members. PtrVND6-C1IR also suppresses the expression of all PtrSND1 members, including PtrSND1-A2, demonstrating that PtrVND6-C1IR is the previously unidentified regulator of PtrSND1-A2 We also found that PtrVND6-C1IR cannot suppress the expression of its cognate transcription factor, PtrVND6-C1PtrVND6-C1 is suppressed by PtrSND1-A2IR Both PtrVND6-C1IR and PtrSND1-A2IR cannot suppress their cognate transcription factors but can suppress all members of the other family. The results indicate that the splice variants from the PtrVND6 and PtrSND1 family may exert reciprocal cross-regulation for complete transcriptional regulation of these two families in wood formation. This reciprocal cross-regulation between families suggests a general mechanism among NAC domain proteins and likely other transcription factors, where intron-retained splice variants provide an additional level of regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Familia de Multigenes , Populus/genética , Factores de Transcripción/genética , Madera/crecimiento & desarrollo , Madera/genética , Xilema/genética , Empalme Alternativo , Pared Celular/genética , Pared Celular/metabolismo , Clonación Molecular , ADN de Plantas , Redes Reguladoras de Genes , Homeostasis , Proteínas Nucleares , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Populus/metabolismo , Proteínas Recombinantes/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Transcriptoma , Xilema/crecimiento & desarrollo
10.
New Phytol ; 222(1): 244-260, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30276825

RESUMEN

Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and coexpressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull-down/co-immunoprecipitation experiments supported a hypothesis of PtrCAD1/PtrCCR2 heterodimer formation. These results provide evidence for the formation of PtrCAD1/PtrCCR2 protein complexes in monolignol biosynthesis in planta.


Asunto(s)
Lignina/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Espectroscopía de Resonancia Magnética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Populus/genética , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Xilema/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(27): 8481-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109572

RESUMEN

Although phosphorylation has long been known to be an important regulatory modification of proteins, no unequivocal evidence has been presented to show functional control by phosphorylation for the plant monolignol biosynthetic pathway. Here, we present the discovery of phosphorylation-mediated on/off regulation of enzyme activity for 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2), an enzyme central to monolignol biosynthesis for lignification in stem-differentiating xylem (SDX) of Populus trichocarpa. Phosphorylation turned off the PtrAldOMT2 activity, as demonstrated in vitro by using purified phosphorylated and unphosphorylated recombinant PtrAldOMT2. Protein extracts of P. trichocarpa SDX, which contains endogenous kinases, also phosphorylated recombinant PtrAldOMT2 and turned off the recombinant protein activity. Similarly, ATP/Mn(2+)-activated phosphorylation of SDX protein extracts reduced the endogenous SDX PtrAldOMT2 activity by ∼ 60%, and dephosphorylation fully restored the activity. Global shotgun proteomic analysis of phosphopeptide-enriched P. trichocarpa SDX protein fractions identified PtrAldOMT2 monophosphorylation at Ser(123) or Ser(125) in vivo. Phosphorylation-site mutagenesis verified the PtrAldOMT2 phosphorylation at Ser(123) or Ser(125) and confirmed the functional importance of these phosphorylation sites for O-methyltransferase activity. The PtrAldOMT2 Ser(123) phosphorylation site is conserved across 93% of AldOMTs from 46 diverse plant species, and 98% of the AldOMTs have either Ser(123) or Ser(125). PtrAldOMT2 is a homodimeric cytosolic enzyme expressed more abundantly in syringyl lignin-rich fiber cells than in guaiacyl lignin-rich vessel cells. The reversible phosphorylation of PtrAldOMT2 is likely to have an important role in regulating syringyl monolignol biosynthesis of P. trichocarpa.


Asunto(s)
Acroleína/análogos & derivados , Catecoles/metabolismo , Lignina/biosíntesis , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Acroleína/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Biocatálisis , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Metiltransferasas/genética , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Proteínas de Plantas/genética , Populus/enzimología , Populus/genética , Proteómica/métodos , Protoplastos/enzimología , Protoplastos/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
12.
Planta ; 245(5): 927-938, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28083709

RESUMEN

MAIN CONCLUSION: Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.


Asunto(s)
Proteínas de Plantas/genética , Populus/genética , Transcriptoma , Madera/genética , Pared Celular/metabolismo , Celulosa/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Anotación de Secuencia Molecular , Especificidad de Órganos , Floema/genética , Floema/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Madera/crecimiento & desarrollo , Xilema/genética , Xilema/crecimiento & desarrollo
13.
Plant Cell ; 26(3): 876-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24619612

RESUMEN

As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein-protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.


Asunto(s)
Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/biosíntesis , Populus/metabolismo , Biología de Sistemas , Coenzima A Ligasas/genética , Inmunoprecipitación , Espectrometría de Masas , Modelos Biológicos , Propionatos , ARN Mensajero/genética , Especificidad por Sustrato
14.
Plant Cell ; 25(11): 4324-41, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24280390

RESUMEN

Wood is an essential renewable raw material for industrial products and energy. However, knowledge of the genetic regulation of wood formation is limited. We developed a genome-wide high-throughput system for the discovery and validation of specific transcription factor (TF)-directed hierarchical gene regulatory networks (hGRNs) in wood formation. This system depends on a new robust procedure for isolation and transfection of Populus trichocarpa stem differentiating xylem protoplasts. We overexpressed Secondary Wall-Associated NAC Domain 1s (Ptr-SND1-B1), a TF gene affecting wood formation, in these protoplasts and identified differentially expressed genes by RNA sequencing. Direct Ptr-SND1-B1-DNA interactions were then inferred by integration of time-course RNA sequencing data and top-down Graphical Gaussian Modeling-based algorithms. These Ptr-SND1-B1-DNA interactions were verified to function in differentiating xylem by anti-PtrSND1-B1 antibody-based chromatin immunoprecipitation (97% accuracy) and in stable transgenic P. trichocarpa (90% accuracy). In this way, we established a Ptr-SND1-B1-directed quantitative hGRN involving 76 direct targets, including eight TF and 61 enzyme-coding genes previously unidentified as targets. The network can be extended to the third layer from the second-layer TFs by computation or by overexpression of a second-layer TF to identify a new group of direct targets (third layer). This approach would allow the sequential establishment, one two-layered hGRN at a time, of all layers involved in a more comprehensive hGRN. Our approach may be particularly useful to study hGRNs in complex processes in plant species resistant to stable genetic transformation and where mutants are unavailable.


Asunto(s)
Redes Reguladoras de Genes , Proteínas de Plantas/genética , Populus/genética , Factores de Transcripción/metabolismo , Madera/genética , Algoritmos , Pared Celular/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa/métodos , Populus/metabolismo , Protoplastos , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Transfección , Madera/metabolismo , Xilema/citología , Xilema/genética
15.
Proc Natl Acad Sci U S A ; 109(36): 14699-704, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22915581

RESUMEN

Secondary Wall-Associated NAC Domain 1s (SND1s) are transcription factors (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in Arabidopsis and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2(IR), that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2(IR) derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2(IR) represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family by its only splice variant has not been previously reported in plants. PtrSND1-A2(IR) lacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2(IR) is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2(IR) is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2(IR) lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2(IR) may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.


Asunto(s)
Redes Reguladoras de Genes/genética , Homeostasis/fisiología , Modelos Biológicos , Populus/genética , Isoformas de Proteínas/genética , Factores de Transcripción/genética , Western Blotting , Clonación Molecular , Cartilla de ADN/genética , Dimerización , Electroforesis en Gel de Poliacrilamida , Plásmidos/genética , Transporte de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Genome Biol ; 25(1): 85, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570851

RESUMEN

Cell type annotation and lineage construction are two of the most critical tasks conducted in the analyses of single-cell RNA sequencing (scRNA-seq). Four recent scRNA-seq studies of differentiating xylem propose four models on differentiating xylem development in Populus. The differences are mostly caused by the use of different strategies for cell type annotation and subsequent lineage interpretation. Here, we emphasize the necessity of using in situ transcriptomes and anatomical information to construct the most plausible xylem development model.


Asunto(s)
Populus , Populus/genética , Populus/metabolismo , Perfilación de la Expresión Génica , Xilema/genética , Xilema/crecimiento & desarrollo , Transcriptoma , Análisis de la Célula Individual
17.
Mol Plant ; 17(1): 112-140, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102833

RESUMEN

Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.


Asunto(s)
Lignina , Madera , Madera/genética , Madera/metabolismo , Lignina/metabolismo , Ecosistema , Plantas/metabolismo , Pared Celular/metabolismo , Árboles/genética
18.
Nat Microbiol ; 9(10): 2522-2537, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39090391

RESUMEN

Leaves of the carnivorous sundew plants (Drosera spp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungus Acrodontium crateriforme as the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process. A. crateriforme has a reduced genome similar to other symbiotic fungi. During A. crateriforme-Drosera spatulata coexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.


Asunto(s)
Drosera , Hojas de la Planta , Simbiosis , Drosera/metabolismo , Animales , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Planta Carnívora/metabolismo , Planta Carnívora/genética , Oxilipinas/metabolismo , Insectos/microbiología , Ciclopentanos/metabolismo , Transcriptoma , Carnivoría , Hongos/genética , Hongos/metabolismo , Hongos/clasificación
19.
Genome Biol ; 24(1): 3, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624504

RESUMEN

BACKGROUND: Xylem, the most abundant tissue on Earth, is responsible for lateral growth in plants. Typical xylem has a radial system composed of ray parenchyma cells and an axial system of fusiform cells. In most angiosperms, fusiform cells comprise vessel elements for water transportation and libriform fibers for mechanical support, while both functions are performed by tracheids in other vascular plants such as gymnosperms. Little is known about the developmental programs and evolutionary relationships of these xylem cell types. RESULTS: Through both single-cell and laser capture microdissection transcriptomic profiling, we determine the developmental lineages of ray and fusiform cells in stem-differentiating xylem across four divergent woody angiosperms. Based on cross-species analyses of single-cell clusters and overlapping trajectories, we reveal highly conserved ray, yet variable fusiform, lineages across angiosperms. Core eudicots Populus trichocarpa and Eucalyptus grandis share nearly identical fusiform lineages, whereas the more basal angiosperm Liriodendron chinense has a fusiform lineage distinct from that in core eudicots. The tracheids in the basal eudicot Trochodendron aralioides, an evolutionarily reversed trait, exhibit strong transcriptomic similarity to vessel elements rather than libriform fibers. CONCLUSIONS: This evo-devo framework provides a comprehensive understanding of the formation of xylem cell lineages across multiple plant species spanning over a hundred million years of evolutionary history.


Asunto(s)
Transcriptoma , Xilema , Xilema/genética , Madera , Perfilación de la Expresión Génica , Plantas
20.
Nat Plants ; 9(7): 1154-1168, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37349550

RESUMEN

Wood cellulose microfibril (CMF) is the most abundant organic substance on Earth but its nanostructure remains poorly understood. There are controversies regarding the glucan chain number (N) of CMFs during initial synthesis and whether they become fused afterward. Here, we combined small-angle X-ray scattering, solid-state nuclear magnetic resonance and X-ray diffraction analyses to resolve CMF nanostructures in native wood. We developed small-angle X-ray scattering measurement methods for the cross-section aspect ratio and area of the crystalline-ordered CMF core, which has a higher scattering length density than the semidisordered shell zone. The 1:1 aspect ratio suggested that CMFs remain mostly segregated, not fused. The area measurement reflected the chain number in the core zone (Ncore). To measure the ratio of ordered cellulose over total cellulose (Roc) by solid-state nuclear magnetic resonance, we developed a method termed global iterative fitting of T1ρ-edited decay (GIFTED), in addition to the conventional proton spin relaxation editing method. Using the formula N = Ncore/Roc, most wood CMFs were found to contain 24 glucan chains, conserved between gymnosperm and angiosperm trees. The average CMF has a crystalline-ordered core of ~2.2 nm diameter and a semidisordered shell of ~0.5 nm thickness. In naturally and artificially aged wood, we observed only CMF aggregation (contact without crystalline continuity) but not fusion (forming a conjoined crystalline unit). This further argued against the existence of partially fused CMFs in new wood, overturning the recently proposed 18-chain fusion hypothesis. Our findings are important for advancing wood structural knowledge and more efficient use of wood resources in sustainable bio-economies.


Asunto(s)
Microfibrillas , Madera , Celulosa/química , Espectroscopía de Resonancia Magnética , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA