Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(9): e202317887, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38161176

RESUMEN

The folding of proteins into intricate three-dimensional structures to achieve biological functions, such as catalysis, is governed by both kinetic and thermodynamic controls. The quest to design artificial enzymes using minimalist peptides seeks to emulate supramolecular structures existing in a catalytically active state. Drawing inspiration from the nuanced process of protein folding, our study explores the enzyme-like activity of amphiphilic peptide nanosystems in both equilibrium and non-equilibrium states, featuring the formation of supramolecular nanofibrils and nanosheets. In contrast to thermodynamically stable nanosheets, the kinetically trapped nanofibrils exhibit dynamic characteristics (e.g., rapid molecular exchange and relatively weak intermolecular packing), resulting in a higher hydrolase-mimicking activity. We emphasize that a supramolecular microenvironment characterized by an optimal local polarity, microviscosity, and ß-sheet hydrogen bonding is conducive to both substrate binding and ester bond hydrolysis. Our work underscores the pivotal role of both thermodynamic and kinetic control in impacting biomimetic catalysis and sheds a light on the development of artificial enzymes.


Asunto(s)
Hidrolasas , Péptidos , Péptidos/química , Proteínas , Pliegue de Proteína , Termodinámica
2.
J Am Chem Soc ; 145(23): 12576-12585, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37267599

RESUMEN

The design of compartmentalized colloids that exhibit biomimetic properties is providing model systems for developing synthetic cell-like entities (protocells). Inspired by the cell walls in plant cells, we developed a method to prepare membranized coacervates as protocell models by coating membraneless liquid-like microdroplets with a protective layer of rigid polysaccharides. Membranization not only endowed colloidal stability and prevented aggregation and coalescence but also facilitated selective biomolecule sequestration and chemical exchange across the membrane. The polysaccharide wall surrounding coacervate protocells acted as a stimuli-responsive structural barrier that enabled enzyme-triggered membrane lysis to initiate internalization and killing of Escherichia coli. The membranized coacervates were capable of spatial organization into structured tissue-like protocell assemblages, offering a means to mimic metabolism and cell-to-cell communication. We envision that surface engineering of protocells as developed in this work generates a platform for constructing advanced synthetic cell mimetics and sophisticated cell-like behaviors.


Asunto(s)
Células Artificiales , Células Artificiales/química , Modelos Biológicos
3.
Proc Natl Acad Sci U S A ; 117(12): 6339-6348, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32165539

RESUMEN

DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson-Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1-9) with two types of architectures, termed as "brush" and "block," were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.


Asunto(s)
ADN/química , Nanoestructuras/química , Peptoides/química , Sistemas de Liberación de Medicamentos , Simulación de Dinámica Molecular , Estructura Molecular , Nanoestructuras/administración & dosificación , Nanotecnología , Peptoides/síntesis química , Electricidad Estática
4.
Proc Natl Acad Sci U S A ; 116(7): 2443-2451, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30679274

RESUMEN

Proton diffusion (PD) across biological membranes is a fundamental process in many biological systems, and much experimental and theoretical effort has been employed for deciphering it. Here, we report on a spectroscopic probe, which can be tightly tethered to the membrane, for following fast (nanosecond) proton transfer events on the surface of membranes. Our probe is composed of a photoacid that serves as our light-induced proton source for the initiation of the PD process. We use our probe to follow PD, and its pH dependence, on the surface of lipid vesicles composed of a zwitterionic headgroup, a negative headgroup, a headgroup that is composed only from the negative phosphate group, or a positive headgroup without the phosphate group. We reveal that the PD kinetic parameters are highly sensitive to the nature of the lipid headgroup, ranging from a fast lateral diffusion at some membranes to the escape of protons from surface to bulk (and vice versa) at others. By referring to existing theoretical models for membrane PD, we found that while some of our results confirm the quasi-equilibrium model, other results are in line with the nonequilibrium model.

5.
Biochem Biophys Res Commun ; 550: 62-69, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33684622

RESUMEN

Diabetic nephropathy (DN) is a common complication of diabetes, and a leading cause of end-stage renal disease. However, the pathogenesis that contributes to DKD is still not fully understood. Protein tyrosine phosphatase non-receptor type 14 (PTPN14), a non receptor tyrosine phosphatase, has numerous cellular events, such as inflammation and cell death. But its potential on DKD has not been investigated yet. In this study, we found that PTPN14 expression was markedly up-regulated in kidney samples of DKD patients, which were confirmed in diabetic mice and were clearly localized in glomeruli. The diabetic mouse model was established using streptozotocin (STZ) in wild type (WT) or PTPN knockout (KO) mice. After, STZ challenge, STZ mice displayed improved kidney functions. The results also showed that STZ-induced histological changes and podocyte injury in renal tissues, which were effectively alleviated by PTPN14 deletion. Moreover, PTPN14 deficiency significantly mitigated inflammatory response and fibrosis in glomeruli of STZ-challenged mice through restraining the activation of nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-ß1 signaling pathways, respectively. The inhibitory effects of PTPN14 suppression on inflammation and fibrosis were confirmed in high glucose (HG)-incubated podocytes. We further found that thyroid receptor interactor protein 6 (TRIP6) expression was dramatically up-regulated in glomeruli of STZ-challenged mice, and was abolished by PTPN14 deletion, which was confirmed in HG-treated podocytes with PTPN14 knockdown. Intriguingly, our in vitro studies showed that PTPN14 directly interacted with TRIP6. Of note, over-expressing TRIP6 markedly abrogated the effects of PTPN14 silence to restrict inflammatory response and fibrosis in HG-incubated podocytes. Taken together, our findings demonstrated that targeting PTPN14 may provide feasible therapies for DKD treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Nefropatías Diabéticas/metabolismo , Fibrosis/prevención & control , Inflamación/prevención & control , Proteínas con Dominio LIM/metabolismo , Podocitos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/deficiencia , Factores de Transcripción/metabolismo , Animales , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Humanos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
6.
Acta Anaesthesiol Scand ; 65(8): 1043-1053, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33884609

RESUMEN

BACKGROUND: Dexmedetomidine is used as adjuvant in total intravenous anaesthesia (TIVA), but there have been few studies concerning its effect on intraoperative neurophysiological monitoring (IONM) during cranial surgery. Our aim was to study the effect of dexmedetomidine on IONM in patients undergoing brain stem and supratentorial cranial surgery. METHODS: Two prospective, randomized, double-blind substudies were conducted. In substudy 1, during TIVA with an infusion of propofol and remifentanil, 10 patients received saline solution (SS) (PR group) and another 10 (PRD group) received dexmedetomidine (0.5 mcg/kg/h). Total dosage of propofol and remifentanil, intensity, latency and amplitude of motor-evoked potentials following transcranial electrical stimulation (tcMEPs) as well as somatosensory-evoked potentials (SSEP) were recorded at baseline, 15, 30, 45 minutes, and at the end of surgery. In order to identify differences in the same patient after dexmedetomidine administration, we designed substudy 2 with 20 new patients randomized to two groups. After 30 minutes with TIVA, 10 patients received dexmedetomidine (0.5 mcg/kg/h) and 10 patients SS. The same variables were recorded. RESULTS: In substudy 1, propofol requirements were significantly lower (P = .004) and tcMEP intensity at the end of surgery was significantly higher in PRD group, but no statistically significant differences were observed for remifentanil requirements, SSEP and tcMEP latency or amplitude. In substudy 2, no differences in any of the variables were identified. CONCLUSIONS: The administration of dexmedetomidine at a dosage of 0.5 mg/kg/h may reduce propofol requirements and adversely affect some neuromonitoring variables. However, it can be an alternative on IONM during cranial surgeries. REDEX EudraCT: 2014-000962-23.


Asunto(s)
Dexmedetomidina , Propofol , Tronco Encefálico , Método Doble Ciego , Potenciales Evocados Somatosensoriales , Humanos , Estudios Prospectivos , Remifentanilo
7.
Angew Chem Int Ed Engl ; 60(18): 9891-9896, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33590604

RESUMEN

Iodide-mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high-energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase-catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme-modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.


Asunto(s)
Técnicas Biosensibles , Oro/química , Yoduros/química , Nanopartículas del Metal/química , Biocatálisis , Oro/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Yoduros/metabolismo , Oxidación-Reducción , Propiedades de Superficie
8.
Angew Chem Int Ed Engl ; 60(30): 16607-16614, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-33982396

RESUMEN

Electrochemical production of hydrogen peroxide (H2 O2 ) through two-electron (2 e- ) oxygen reduction reaction (ORR) is an on-site and clean route. Oxygen-doped carbon materials with high ORR activity and H2 O2 selectivity have been considered as the promising catalysts, however, there is still a lack of direct experimental evidence to identify true active sites at the complex carbon surface. Herein, we propose a chemical titration strategy to decipher the oxygen-doped carbon nanosheet (OCNS900 ) catalyst for 2 e- ORR. The OCNS900 exhibits outstanding 2 e- ORR performances with onset potential of 0.825 V (vs. RHE), mass activity of 14.5 A g-1 at 0.75 V (vs. RHE) and H2 O2 production rate of 770 mmol g-1 h-1 in flow cell, surpassing most reported carbon catalysts. Through selective chemical titration of C=O, C-OH, and COOH groups, we found that C=O species contributed to the most electrocatalytic activity and were the most active sites for 2 e- ORR, which were corroborated by theoretical calculations.

9.
Adv Funct Mater ; 30(26): 1909009, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35677899

RESUMEN

Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.

10.
Adv Funct Mater ; 30(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33071714

RESUMEN

Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.

11.
Small ; 16(32): e2002482, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32627945

RESUMEN

Hierarchical nanostructures with tailored component and architectures are attractive for energy-related applications. Here, the delicate design and construction of hierarchical MoS2 /MoP (H-MoS2 /MoP) nanorods for the hydrogen evolution reaction (HER) are demonstrated. This multiscale design rationally combines the compositional and structural advantages of MoS2 /MoP heterojunction into a hierarchical architecture, which can modulate electronic structure of S, remarkably facilitating the electrocatalytic HER. Benefitting from their unique architecture and electronic structure, the H-MoS2 /MoP nanorods exhibit excellent performance for HER with ultralow overpotential of 92 mV at current density of 10 mA cm-2 in 1 m KOH and high stability. This work not only provides an efficient approach to constructing hierarchical heterojunctions, but also a multiscale strategy for all-round regulation of the electronic structure and hierarchical morphology of nanomaterials for energy-related applications.

12.
J Am Chem Soc ; 140(51): 18217-18226, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30557016

RESUMEN

Quantum-sized metallic clusters protected by biological ligands represent a new class of luminescent materials; yet the understanding of structural information and photoluminescence origin of these ultrasmall clusters remains a challenge. Herein we systematically study the surface ligand dynamics and ligand-metal core interactions of peptide-protected gold nanoclusters (AuNCs) with combined experimental characterizations and theoretical molecular simulations. We show that the peptide sequence plays an important role in determining the surface peptide structuring, interfacial water dynamics and ligand-Au core interaction, which can be tailored by controlling peptide acetylation, constituent amino acid electron donating/withdrawing capacity, aromaticity/hydrophobicity and by adjusting environmental pH. Specifically, emission enhancement is achieved through increasing the electron density of surface ligands in proximity to the Au core, discouraging photoinduced quenching, and by reducing the amount of surface-bound water molecules. These findings provide key design principles for understanding the surface dynamics of peptide-protected nanoparticles and maximizing the photoluminescence of metallic clusters through the exploitation of biologically relevant ligand properties.


Asunto(s)
Oro/química , Sustancias Luminiscentes/química , Nanopartículas del Metal/química , Péptidos/química , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Luminiscencia , Microscopía Confocal , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
13.
J Am Chem Soc ; 139(39): 13592-13595, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28902999

RESUMEN

We report the thermodynamically controlled growth of solution-processable and free-standing nanosheets via peptide assembly in two dimensions. By taking advantage of self-sorting between peptide ß-strands and hydrocarbon chains, we have demonstrated the formation of Janus 2D structures with single-layer thickness, which enable a predetermined surface heterofunctionalization. A controlled 2D-to-1D morphological transition was achieved by subtly adjusting the intermolecular forces. These nanosheets provide an ideal substrate for the engineering of guest components (e.g., proteins and nanoparticles), where enhanced enzyme activity was observed. We anticipate that sequence-specific programmed peptides will offer promise as design elements for 2D assemblies with face-selective functionalization.


Asunto(s)
Nanoestructuras/química , Péptidos/síntesis química , Estructura Molecular , Tamaño de la Partícula , Péptidos/química , Termodinámica
14.
Angew Chem Int Ed Engl ; 56(9): 2361-2365, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28102964

RESUMEN

Supramolecular self-assembly is an important process that enables the conception of complex structures mimicking biological motifs. Herein, we constructed helical fibrils through chiral self-assembly of nucleobase-peptide conjugates (NPCs), where achiral nucleobases are helically displayed on the surface of fibrils, comparable to polymerized nucleic acids. Selective binding between DNA and the NPC fibrils was observed with fluorescence polarization. Taking advantage of metal-nucleobase recognition, we highlight the possibility of deposition/assembly of plasmonic nanoparticles onto the fibrillar constructs. In this approach, the supramolecular chirality of NPCs can be adaptively imparted to metallic nanoparticles, covering them to generate structures with plasmonic chirality that exhibit significantly improved colloidal stability. The self-assembly of rationally designed NPCs into nanohelices is a promising way to engineer complex, optically diverse nucleobase-derived nanomaterials.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Ácidos Nucleicos/química , Péptidos/química , Sitios de Unión , Coloides/química , ADN/química , Modelos Moleculares , Nanoestructuras/ultraestructura , Polimerizacion
15.
Anal Chem ; 87(15): 7644-52, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26197040

RESUMEN

A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17ß-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.


Asunto(s)
Aptámeros de Nucleótidos/química , Colorimetría/métodos , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles , Cocaína/química , Cocaína/orina , Estradiol/química , Estradiol/orina , Humanos , Límite de Detección , Ocratoxinas/análisis , Saliva/química , Vino/análisis
16.
Adv Funct Mater ; 25(21): 3183-3192, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28458628

RESUMEN

Hybrid self-assembly has become a reliable approach to synthesize soft materials with multiple levels of structural complexity and synergistic functionality. In this work, photoluminescent graphene quantum dots (GQDs, 2-5 nm) are used for the first time as molecule-like building blocks to construct self-assembled hybrid materials for label-free biosensors. Ionic self-assembly of disc-shaped GQDs and charged biopolymers is found to generate a series of hierarchical structures that exhibit aggregation-induced fluorescence quenching of the GQDs and change the protein/polypeptide secondary structure. The integration of GQDs and biopolymers via self-assembly offers a flexible toolkit for the design of label-free biosensors in which the GQDs serve as a fluorescent probe and the biopolymers provide biological function. The versatility of this approach is demonstrated in the detection of glycosaminoglycans (GAGs), pH, and proteases using three strategies: 1) competitive binding of GAGs to biopolymers, 2) pH-responsive structural changes of polypeptides, and 3) enzymatic hydrolysis of the protein backbone, respectively. It is anticipated that the integrative self-assembly of biomolecules and GQDs will open up new avenues for the design of multifunctional biomaterials with combined optoelectronic properties and biological applications.

17.
Anal Chem ; 86(13): 6410-7, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24914622

RESUMEN

The development of novel assays for protease sensing plays an important role in clinical diagnostics and therapeutics. Herein, we report a supramolecular platform for label-free protease detection, based on protein/dye self-assembly and enzyme-triggered disassembly. In a typical case, coassembly of protamine sulfate and perylene dye via electrostatic attractions and π-π interactions caused significant colorimetric and fluorescent responses. Subsequent addition of trypsin was found to cleave the amide bonds of protein, triggering the dissociation of protein/dye aggregates and the release of perylene dyes. The enzyme-triggered disassembly was transduced into multiple readouts including absorption, fluorescence, and polarization, which were exploited for trypsin detection and inhibitor testing. This assay was also used for turn-on fluorescence detection of cathepsin B, an enzyme known to be overexpressed in mammalian cancer cells. The integration of supramolecular self-assembly into enzyme detection in this work has provided a novel label-free biosensing platform which is highly sensitive with multimodal readouts. The relative simplicity of the approach avoids the need for time-consuming substrate synthesis, and is also amenable to naked eye detection.


Asunto(s)
Técnicas Biosensibles/métodos , Catepsina B/análisis , Colorantes Fluorescentes/química , Perileno/química , Tripsina/análisis , Animales , Bovinos , Fluorescencia , Humanos , Salmón , Espectrometría de Fluorescencia/métodos
18.
IEEE Trans Image Process ; 33: 767-779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198253

RESUMEN

In histopathology, the tissue slides are usually stained by common H&E stain or special stains (MAS, PAS, and PASM, etc.) to clearly show specific tissue structures. The rapid development of deep learning provides a good solution to generate virtual staining images to significantly reduce the time and labor costs associated with histochemical staining. However, most existing methods need to train a special model for every two stains, which consumes a lot of computing resources with the increasing of staining types. To address this problem, we propose an unsupervised multi-domain stain transfer method, GramGAN, which realizes the progressive transfer through cascaded Style-Guided blocks. For each Style-Guided block, we design a style encoding dictionary to characterize and store all the staining style information. In addition, we propose a Rényi entropy-based regularization term to improve the discrimination ability of different styles. The experimental results show that our method can realize accurate transferring among multiple staining styles with better performance. Furthermore, we build and publish a special stained image dataset suitable for glomeruli segmentation (including H&E staining), where the accuracy of glomeruli detection and segmentation can be significantly improved after transferring H&E-stained images to PAS-stained and PASM-stained ones by our method. The code is publicly available at: https://github.com/xianchaoguan/GramGAN.


Asunto(s)
Colorantes , Procesamiento de Imagen Asistido por Computador
19.
Nat Chem ; 16(2): 158-167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932411

RESUMEN

Bottom-up assembly of higher-order cytomimetic systems capable of coordinated physical behaviours, collective chemical signalling and spatially integrated processing is a key challenge in the study of artificial multicellularity. Here we develop an interactive binary population of coacervate microdroplets that spontaneously self-sort into chain-like protocell networks with an alternating sequence of structurally and compositionally dissimilar microdomains with hemispherical contact points. The protocell superstructures exhibit macromolecular self-sorting, spatially localized enzyme/ribozyme biocatalysis and interdroplet molecular translocation. They are capable of topographical reconfiguration using chemical or light-mediated stimuli and can be used as a micro-extraction system for macroscale biomolecular sorting. Our methodology opens a pathway towards the self-assembly of multicomponent protocell networks based on selective processes of coacervate droplet-droplet adhesion and fusion, and provides a step towards the spontaneous orchestration of protocell models into artificial tissues and colonies with ordered architectures and collective functions.


Asunto(s)
Células Artificiales , Células Artificiales/química
20.
Adv Funct Mater ; 23(9): 1172-1181, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23885226

RESUMEN

An important criterion for effective gene therapy is sufficient chromosomal integration activity. The Sleeping Beauty (SB) transposon system is a plasmid system allowing efficient insertion of transgenes into the host genome. However, such efficient insertion occurs only after the system is delivered to nuclei. Since transposons do not have the transducing abilities of viral vectors, efficient delivery of this system first into cells and then into cell nuclei is still a challenge. Here, a phage display technique using a major coat displayed phage library is employed to identify a peptide (VTAMEPGQ) that can home to rat mesenchymal stem cells (rMSCs). A nanoparticle, called liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic complex of protamine, DNA and targeting peptides. Various peptides are enveloped inside the LPD to improve its targeting capability for rMSCs and nuclei. The rMSC-targeting peptide and nuclear localization signal (NLS) peptide can execute the synergetic effect to promote transfection action of LPD. The homing peptide directs the LPD to target the MSCs, whereas the NLS peptide directs transposon to accumulate into nuclei once LPD is internalized inside the cells, leading to increased gene expression. This suggests that rMSC-targeting peptide and NLS peptide within LPD can target to rMSCs and then guide transposon into nuclei. After entering the nuclei, SB transposon increase the insertion rates into cellular chromosomes. The targeting LPD does not show obvious cell toxicity and influence on the differentiation potential of rMSCs. Therefore, the integration of SB transposon and LPD system is a promising nonviral gene delivery vector in stem cell therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA