Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684685

RESUMEN

The neural correlates of intentional emotion transfer by the music performer are not well investigated as the present-day research mainly focuses on the assessment of emotions evoked by music. In this study, we aim to determine whether EEG connectivity patterns can reflect differences in information exchange during emotional playing. The EEG data were recorded while subjects were performing a simple piano score with contrasting emotional intentions and evaluated the subjectively experienced success of emotion transfer. The brain connectivity patterns were assessed from the EEG data using the Granger Causality approach. The effective connectivity was analyzed in different frequency bands-delta, theta, alpha, beta, and gamma. The features that (1) were able to discriminate between the neutral baseline and the emotional playing and (2) were shared across conditions, were used for further comparison. The low frequency bands-delta, theta, alpha-showed a limited number of connections (4 to 6) contributing to the discrimination between the emotional playing conditions. In contrast, a dense pattern of connections between regions that was able to discriminate between conditions (30 to 38) was observed in beta and gamma frequency ranges. The current study demonstrates that EEG-based connectivity in beta and gamma frequency ranges can effectively reflect the state of the networks involved in the emotional transfer through musical performance, whereas utility of the low frequency bands (delta, theta, alpha) remains questionable.


Asunto(s)
Música , Encéfalo/fisiología , Mapeo Encefálico , Electroencefalografía , Emociones/fisiología , Humanos , Música/psicología
2.
J Neuroeng Rehabil ; 18(1): 109, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215283

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) can develop impulse control disorders (ICDs) while undergoing a pharmacological treatment for motor control dysfunctions with a dopamine agonist (DA). Conventional clinical interviews or questionnaires can be biased and may not accurately diagnose at the early stage. A wearable electroencephalogram (EEG)-sensing headset paired with an examination procedure can be a potential user-friendly method to explore ICD-related signatures that can detect its early signs and progression by reflecting brain activity. METHODS: A stereotypical Go/NoGo test that targets impulse inhibition was performed on 59 individuals, including healthy controls, patients with PD, and patients with PD diagnosed by ICDs. We conducted two Go/NoGo sessions before and after the DA-pharmacological treatment for the PD and ICD groups. A low-cost LEGO-like EEG headset was used to record concurrent EEG signals. Then, we used the event-related potential (ERP) analytical framework to explore ICD-related EEG abnormalities after DA treatment. RESULTS: After the DA treatment, only the ICD-diagnosed PD patients made more behavioral errors and tended to exhibit the deterioration for the NoGo N2 and P3 peak amplitudes at fronto-central electrodes in contrast to the HC and PD groups. Particularly, the extent of the diminished NoGo-N2 amplitude was prone to be modulated by the ICD scores at Fz with marginal statistical significance (r = - 0.34, p = 0.07). CONCLUSIONS: The low-cost LEGO-like EEG headset successfully captured ERP waveforms and objectively assessed ICD in patients with PD undergoing DA treatment. This objective neuro-evidence could provide complementary information to conventional clinical scales used to diagnose ICD adverse effects.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Enfermedad de Parkinson , Trastornos Disruptivos, del Control de Impulso y de la Conducta/diagnóstico , Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Electroencefalografía , Potenciales Evocados , Estudios de Factibilidad , Humanos , Enfermedad de Parkinson/complicaciones
3.
Sensors (Basel) ; 21(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833541

RESUMEN

The research on neural correlates of intentional emotion communication by the music performer is still limited. In this study, we attempted to evaluate EEG patterns recorded from musicians who were instructed to perform a simple piano score while manipulating their manner of play to express specific contrasting emotions and self-rate the emotion they reflected on the scales of arousal and valence. In the emotional playing task, participants were instructed to improvise variations in a manner by which the targeted emotion is communicated. In contrast, in the neutral playing task, participants were asked to play the same piece precisely as written to obtain data for control over general patterns of motor and sensory activation during playing. The spectral analysis of the signal was applied as an initial step to be able to connect findings to the wider field of music-emotion research. The experimental contrast of emotional playing vs. neutral playing was employed to probe brain activity patterns differentially involved in distinct emotional states. The tasks of emotional and neutral playing differed considerably with respect to the state of intended-to-transfer emotion arousal and valence levels. The EEG activity differences were observed between distressed/excited and neutral/depressed/relaxed playing.


Asunto(s)
Música , Estimulación Acústica , Percepción Auditiva , Electroencefalografía , Emociones , Humanos
4.
Sensors (Basel) ; 19(19)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581619

RESUMEN

Mobile electroencephalogram (EEG)-sensing technologies have rapidly progressed and made the access of neuroelectrical brain activity outside the laboratory in everyday life more realistic. However, most existing EEG headsets exhibit a fixed design, whereby its immobile montage in terms of electrode density and coverage inevitably poses a great challenge with applicability and generalizability to the fundamental study and application of the brain-computer interface (BCI). In this study, a cost-efficient, custom EEG-electrode holder infrastructure was designed through the assembly of primary components, including the sensor-positioning ring, inter-ring bridge, and bridge shield. It allows a user to (re)assemble a compact holder grid to accommodate a desired number of electrodes only to the regions of interest of the brain and iteratively adapt it to a given head size for optimal electrode-scalp contact and signal quality. This study empirically demonstrated its easy-to-fabricate nature by a low-end fused deposition modeling (FDM) 3D printer and proved its practicability of capturing event-related potential (ERP) and steady-state visual-evoked potential (SSVEP) signatures over 15 subjects. This paper highlights the possibilities for a cost-efficient electrode-holder assembly infrastructure with replaceable montage, flexibly retrofitted in an unlimited fashion, for an individual for distinctive fundamental EEG studies and BCI applications.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Adulto , Interfaces Cerebro-Computador , Electrodos , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Cuero Cabelludo/fisiología , Adulto Joven
5.
Neuroimage ; 174: 407-419, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29578026

RESUMEN

Inter- and intra-subject variability pose a major challenge to decoding human brain activity in brain-computer interfaces (BCIs) based on non-invasive electroencephalogram (EEG). Conventionally, a time-consuming and laborious training procedure is performed on each new user to collect sufficient individualized data, hindering the applications of BCIs on monitoring brain states (e.g. drowsiness) in real-world settings. This study proposes applying hierarchical clustering to assess the inter- and intra-subject variability within a large-scale dataset of EEG collected in a simulated driving task, and validates the feasibility of transferring EEG-based drowsiness-detection models across subjects. A subject-transfer framework is thus developed for detecting drowsiness based on a large-scale model pool from other subjects and a small amount of alert baseline calibration data from a new user. The model pool ensures the availability of positive model transferring, whereas the alert baseline data serve as a selector of decoding models in the pool. Compared with the conventional within-subject approach, the proposed framework remarkably reduced the required calibration time for a new user by 90% (18.00 min-1.72 ±â€¯0.36 min) without compromising performance (p = 0.0910) when sufficient existing data are available. These findings suggest a practical pathway toward plug-and-play drowsiness detection and can ignite numerous real-world BCI applications.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía/métodos , Desempeño Psicomotor , Vigilia , Ondas Encefálicas , Interfaces Cerebro-Computador , Calibración , Análisis por Conglomerados , Humanos , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
6.
J Neuroeng Rehabil ; 11: 119, 2014 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-25108604

RESUMEN

BACKGROUND: Bridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking. METHODS: This study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment. RESULTS: Despite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s). CONCLUSIONS: SSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications.


Asunto(s)
Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Sistemas en Línea , Interfaz Usuario-Computador , Caminata/fisiología , Adulto , Algoritmos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Programas Informáticos , Adulto Joven
7.
J Neuroeng Rehabil ; 11: 18, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24581119

RESUMEN

BACKGROUND: Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. METHOD: This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. RESULTS: Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. CONCLUSION: The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico , Encéfalo/fisiología , Música , Electrofisiología , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-38082699

RESUMEN

The electroencephalogram (EEG)-based affective brain-computer interface (aBCI) has attracted extensive attention in multidisciplinary fields in the past decade. However, the inherent variability of emotional responses recorded in EEG signals increases the vulnerability of pre-trained machine-learning models and impedes the applicability of aBCIs with real-life settings. To overcome the shortcomings associated with the limited personal data in affective modeling, this study proposes a model-basis transfer learning (TL) approach and verifies its feasibility to construct a personalized model using less emotion-annotated data in a longitudinal eight-day dataset comprising data on 10 subjects. By performing daily reliability testing, the proposed TL approach outperformed the subject-dependent counterpart (using limited data only) by ~6% in binary valence classification after recycling a compact set of the eight most transferable models from other subjects. These empirical findings practically contribute to progress in applying TL in realistic aBCI applications.Clinical Relevance- The proposed model-basis TL approach overcomes the shortcoming of inherent variability in EEG signals, supporting realistic aBCI applications.


Asunto(s)
Interfaces Cerebro-Computador , Emociones , Humanos , Reproducibilidad de los Resultados , Emociones/fisiología , Electroencefalografía , Aprendizaje Automático
9.
Artículo en Inglés | MEDLINE | ID: mdl-37751338

RESUMEN

Wearable low-density dry electroencephalogram (EEG) headsets facilitate multidisciplinary applications of brain-activity decoding and brain-triggered interaction for healthy people in real-world scenarios. However, movement artifacts pose a great challenge to their validity in users with naturalistic behaviors (i.e., without highly controlled settings in a laboratory). High-precision, high-density EEG instruments commonly embed an active electrode infrastructure and/or incorporate an auxiliary artifact subspace reconstruction (ASR) pipeline to handle movement artifact interferences. Existing endeavors motivate this study to explore the efficacy of both hardware and software solutions in low-density and dry EEG recordings against non-tethered settings, which are rarely found in the literature. Therefore, this study employed a LEGO-like electrode-holder assembly grid to coordinate three 3-channel system designs (with passive/active dry vs. passive wet electrodes). It also conducted a simultaneous EEG recording while performing an oddball task during treadmill walking, with speeds of 1 and 2 KPH. The quantitative metrics of pre-stimulus noise, signal-to-noise ratio, and inter-subject correlation from the collected event-related potentials of 18 subjects were assessed. Results indicate that while treating a passive-wet system as benchmark, only the active-electrode design more or less rectified movement artifacts for dry electrodes, whereas the ASR pipeline was substantially compromised by limited electrodes. These findings suggest that a lightweight, minimally obtrusive dry EEG headset should at least equip an active-electrode infrastructure to withstand realistic movement artifacts for potentially sustaining its validity and applicability in real-world scenarios.

10.
Artículo en Inglés | MEDLINE | ID: mdl-37819826

RESUMEN

Patients with Parkinson's disease (PD) may develop cognitive symptoms of impulse control disorders (ICDs) when chronically treated with dopamine agonist (DA) therapy for motor deficits. Motor and cognitive comorbidities critically increase the disability and mortality of the affected patients. This study proposes an electroencephalogram (EEG)-driven machine-learning scenario to automatically assess ICD comorbidity in PD. We employed a classic Go/NoGo task to appraise the capacity of cognitive and motoric inhibition with a low-cost, custom LEGO-like headset to record task-relevant EEG activity. Further, we optimized a support vector machine (SVM) and support vector regression (SVR) pipeline to learn discriminative EEG spectral signatures for the detection of ICD comorbidity and the estimation of ICD severity, respectively. With a dataset of 21 subjects with typical PD, 9 subjects with PD and ICD comorbidity (ICD), and 25 healthy controls (HC), the study results showed that the SVM pipeline differentiated subjects with ICD from subjects with PD with an accuracy of 66.3% and returned an around-chance accuracy of 53.3% for the classification of PD versus HC subjects without the comorbidity concern. Furthermore, the SVR pipeline yielded significantly higher severity scores for the ICD group than for the PD group and resembled the ICD vs. PD distinction according to the clinical questionnaire scores, which was barely replicated by random guessing. Without a commercial, high-precision EEG product, our demonstration may facilitate deploying a wearable computer-aided diagnosis system to assess the risk of DA-triggered cognitive comorbidity in patients with PD in their daily environment.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/diagnóstico , Trastornos Disruptivos, del Control de Impulso y de la Conducta/epidemiología , Agonistas de Dopamina/uso terapéutico , Aprendizaje Automático , Electroencefalografía
11.
Artículo en Inglés | MEDLINE | ID: mdl-37883285

RESUMEN

Imbuing emotional intent serves as a crucial modulator of music improvisation during active musical instrument playing. However, most improvisation-related neural endeavors have been gained without considering the emotional context. This study attempts to exploit reproducible spatio-spectral electroencephalogram (EEG) oscillations of emotional intent using a data-driven independent component analysis framework in an ecological multiday piano playing experiment. Through the four-day 32-ch EEG dataset of 10 professional players, we showed that EEG patterns were substantially affected by both intra- and inter-individual variability underlying the emotional intent of the dichotomized valence (positive vs. negative) and arousal (high vs. low) categories. Less than half (3-4) of the 10 participants analogously exhibited day-reproducible ( ≥ three days) spectral modulations at the right frontal beta in response to the valence contrast as well as the frontal central gamma and the superior parietal alpha to the arousal counterpart. In particular, the frontal engagement facilitates a better understanding of the frontal cortex (e.g., dorsolateral prefrontal cortex and anterior cingulate cortex) and its role in intervening emotional processes and expressing spectral signatures that are relatively resistant to natural EEG variability. Such ecologically vivid EEG findings may lead to better understanding of the development of a brain-computer music interface infrastructure capable of guiding the training, performance, and appreciation for emotional improvisatory status or actuating music interaction via emotional context.


Asunto(s)
Emociones , Música , Humanos , Emociones/fisiología , Electroencefalografía , Nivel de Alerta/fisiología , Lóbulo Frontal , Música/psicología
12.
Neuroimage ; 62(3): 1469-77, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22634852

RESUMEN

This study investigates the independent modulators that mediate the power spectra of electrophysiological processes, measured by electroencephalogram (EEG), in a sustained-attention experiment. EEG and behavioral data were collected during 1-2 hour virtual-reality based driving experiments in which subjects were instructed to maintain their cruising position and compensate for randomly induced drift using the steering wheel. Independent component analysis (ICA) applied to 30-channel EEG data separated the recorded EEG signals into a sum of maximally temporally independent components (ICs) for each of 30 subjects. Logarithmic spectra of resultant IC activities were then decomposed by principal component analysis, followed by ICA, to find spectrally fixed and temporally independent modulators (IM). Across subjects, the spectral ICA consistently found four performance-related independent modulators: delta, delta-theta, alpha, and beta modulators that multiplicatively affected the spectra of spatially distinct IC processes when the participants experienced waves of alternating alertness and drowsiness during long-hour simulated driving. The activation of the delta-theta modulator increased monotonically as subjects' task performances decreased. Furthermore, the time courses of the theta-beta modulator were highly correlated with concurrent changes in driving errors across subjects (r=0.77±0.13).


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Electroencefalografía , Fases del Sueño/fisiología , Vigilia/fisiología , Adolescente , Adulto , Conducción de Automóvil , Femenino , Humanos , Masculino , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador , Adulto Joven
13.
IEEE J Biomed Health Inform ; 24(5): 1255-1264, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31403448

RESUMEN

State-of-the-art electroencephalogram (EEG)-based emotion-classification works indicate that a personalized model may not be well exploited until sufficient labeled data are available, given a substantial EEG non-stationarity over days. However, it is impractical to impose a labor-intensive, time-consuming multiple-day data collection. This study proposes a robust principal component analysis (RPCA)-embedded transfer learning (TL) to generate a personalized cross-day model with less labeled data, while obviating intra- and inter-individual differences. Upon the add-session-in validation on two datasets MDME (five-day data of 12 subjects) and SDMN (single-day data of 26 subjects), the experimental results showed that TL enabled the classifier of an MDME individual (using his/her 1st-day session only) to improve progressively in valence and arousal classification by adding similar source sessions (SSs) via the within-dataset TL (wdTL) and cross-dataset TL (cdTL) manners. When recruiting three SSs to test on the 5th-day session, the wdTL improvement (valence: 11.19%, arousal: 5.82%) marginally outperformed the subject-dependent (SD) counterpart (valence: 9.75%, arousal: 3.77%) that was obtained using their own 2nd-4th-day sessions only. The cdTL returned a similar trend in valence (8.35%), yet it was less effective in arousal (0.81%). Most importantly, such cross-day enhancements did not occur in either SD or TL scenarios until RPCA processing. This work sheds light on how to construct a personalized model by leveraging ever-growing EEG repositories.


Asunto(s)
Electroencefalografía/métodos , Emociones/clasificación , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Femenino , Humanos , Masculino , Análisis de Componente Principal
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4055-4058, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018889

RESUMEN

Recent mobile and wearable electroencephalogram (EEG)-sensing technologies have been demonstrated to be effective for measuring rapid changes of spatio-spectral EEG correlates of brain and cognitive functions of interest with more ecologically natural settings. However, commercial EEG products are available commonly with a fixed headset in terms of the number of electrodes and their locations to the scalp practically constrains their generalizability for different demands of EEG and brain-computer interface (BCI) study. While most progress focused on innovation of sensing hardware and conductive electrodes, less effort has been done to renovate mechanical structures of an EEG headset. Recently, an electrode-holder assembly infrastructure was designed to be capable of unlimitedly (re)assembling a desired n-channel electrode headset through a set of primary elements (i.e., LEGO-like headset). The present work empirically demonstrated one of its advantage regarding coordinating the homogeneous or heterogeneous sensors covering the target regions of the brain. Towards this objective, an 8-channel LEGO headset was assembled to conduct a simultaneous event-related potential (ERP) recording of the wet- and dry-electrode EEG systems and testify their signal quality during standing still versus treadmill walking. The results showed that both systems returned a comparable P300 signal-to-noise ratio (SNR) for standing, yet the dry system was more susceptible to the movement artifacts during slow walking. The LEGO headset infrastructure facilitates a desired benchmark study, e.g., comparing the signal quality of different electrodes on non-stationary subjects conducted in this work, or a specific EEG and BCI application.


Asunto(s)
Interfaces Cerebro-Computador , Caminata , Electrodos , Electroencefalografía , Potenciales Evocados
15.
Front Hum Neurosci ; 13: 366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736727

RESUMEN

Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have been attracting ever-growing interest and research resources. Whereas most previous neuroscience studies have focused on single-day/-session recording and sensor-level analysis, less effort has been invested in assessing the fundamental nature of non-stationary EEG oscillations underlying emotional responses across days and individuals. This work thus aimed to use a data-driven blind source separation method, i.e., independent component analysis (ICA), to derive emotion-relevant spatio-spectral EEG source oscillations and assess the extent of non-stationarity. To this end, this work conducted an 8-day music-listening experiment (i.e., roughly interspaced over 2 months) and recorded whole-scalp 30-ch EEG data from 10 subjects. Given the large size of the data (i.e., from 80 sessions), results indicated that EEG non-stationarity was clearly revealed in the numbers and locations of brain sources of interest as well as their spectral modulation to the emotional responses. Less than half of subjects (two to four) showed the same relatively day-stationary (source reproducibility >6 days) spatio-spectral tendency towards one of the binary valence and arousal states. This work substantially advances the previous work by exploiting intra- and inter-individual EEG variability in an ecological multiday scenario. Such EEG non-stationarity may inevitably present a great challenge for the development of an accurate, robust, and generalized emotion-classification model.

16.
Front Hum Neurosci ; 11: 334, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28701938

RESUMEN

To overcome the individual differences, an accurate electroencephalogram (EEG)-based emotion-classification system requires a considerable amount of ecological calibration data for each individual, which is labor-intensive and time-consuming. Transfer learning (TL) has drawn increasing attention in the field of EEG signal mining in recent years. The TL leverages existing data collected from other people to build a model for a new individual with little calibration data. However, brute-force transfer to an individual (i.e., blindly leveraged the labeled data from others) may lead to a negative transfer that degrades performance rather than improving it. This study thus proposed a conditional TL (cTL) framework to facilitate a positive transfer (improving subject-specific performance without increasing the labeled data) for each individual. The cTL first assesses an individual's transferability for positive transfer and then selectively leverages the data from others with comparable feature spaces. The empirical results showed that among 26 individuals, the proposed cTL framework identified 16 and 14 transferable individuals who could benefit from the data from others for emotion valence and arousal classification, respectively. These transferable individuals could then leverage the data from 18 and 12 individuals who had similar EEG signatures to attain maximal TL improvements in valence- and arousal-classification accuracy. The cTL improved the overall classification performance of 26 individuals by ~15% for valence categorization and ~12% for arousal counterpart, as compared to their default performance based solely on the subject-specific data. This study evidently demonstrated the feasibility of the proposed cTL framework for improving an individual's default emotion-classification performance given a data repository. The cTL framework may shed light on the development of a robust emotion-classification model using fewer labeled subject-specific data toward a real-life affective brain-computer interface (ABCI).

17.
Front Comput Neurosci ; 11: 64, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769778

RESUMEN

Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG) signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecological challenge that the EEG patterns recorded in real life substantially change across days (i.e., day-to-day variability), arguably making the pre-defined predictive model vulnerable to the given EEG signals of a separate day. The present work addressed how to mitigate the inter-day EEG variability of emotional responses with an attempt to facilitate cross-day emotion classification, which was less concerned in the literature. This study proposed a robust principal component analysis (RPCA)-based signal filtering strategy and validated its neurophysiological validity and machine-learning practicability on a binary emotion classification task (happiness vs. sadness) using a five-day EEG dataset of 12 subjects when participated in a music-listening task. The empirical results showed that the RPCA-decomposed sparse signals (RPCA-S) enabled filtering off the background EEG activity that contributed more to the inter-day variability, and predominately captured the EEG oscillations of emotional responses that behaved relatively consistent along days. Through applying a realistic add-day-in classification validation scheme, the RPCA-S progressively exploited more informative features (from 12.67 ± 5.99 to 20.83 ± 7.18) and improved the cross-day binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40%) as trained the EEG signals from one to four recording days and tested against one unseen subsequent day. The original EEG features (prior to RPCA processing) neither achieved the cross-day classification (the accuracy was around chance level) nor replicated the encouraging improvement due to the inter-day EEG variability. This result demonstrated the effectiveness of the proposed method and may shed some light on developing a realistic emotion-classification analytical framework alleviating day-to-day variability.

18.
JAMA Ophthalmol ; 135(6): 550-557, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28448641

RESUMEN

Importance: The current assessment of visual field loss in diseases such as glaucoma is affected by the subjectivity of patient responses and the lack of portability of standard perimeters. Objective: To describe the development and initial validation of a portable brain-computer interface (BCI) for objectively assessing visual function loss. Design, Setting, and Participants: This case-control study involved 62 eyes of 33 patients with glaucoma and 30 eyes of 17 healthy participants. Glaucoma was diagnosed based on a masked grading of optic disc stereophotographs. All participants underwent testing with a BCI device and standard automated perimetry (SAP) within 3 months. The BCI device integrates wearable, wireless, dry electroencephalogram and electrooculogram systems and a cellphone-based head-mounted display to enable the detection of multifocal steady state visual-evoked potentials associated with visual field stimulation. The performances of global and sectoral multifocal steady state visual-evoked potentials metrics to discriminate glaucomatous from healthy eyes were compared with global and sectoral SAP parameters. The repeatability of the BCI device measurements was assessed by collecting results of repeated testing in 20 eyes of 10 participants with glaucoma for 3 sessions of measurements separated by weekly intervals. Main Outcomes and Measures: Receiver operating characteristic curves summarizing diagnostic accuracy. Intraclass correlation coefficients and coefficients of variation for assessing repeatability. Results: Among the 33 participants with glaucoma, 19 (58%) were white, 12 (36%) were black, and 2 (6%) were Asian, while among the 17 participants with healthy eyes, 9 (53%) were white, 8 (47%) were black, and none were Asian. The receiver operating characteristic curve area for the global BCI multifocal steady state visual-evoked potentials parameter was 0.92 (95% CI, 0.86-0.96), which was larger than for SAP mean deviation (area under the curve, 0.81; 95% CI, 0.72-0.90), SAP mean sensitivity (area under the curve, 0.80; 95% CI, 0.69-0.88; P = .03), and SAP pattern standard deviation (area under the curve, 0.77; 95% CI, 0.66-0.87; P = .01). No statistically significant differences were seen for the sectoral measurements between the BCI and SAP. Intraclass coefficients for global and sectoral parameters ranged from 0.74 to 0.92, and mean coefficients of variation ranged from 3.03% to 7.45%. Conclusions and Relevance: The BCI device may be useful for assessing the electrical brain responses associated with visual field stimulation. The device discriminated eyes with glaucomatous neuropathy from healthy eyes in a clinically based setting. Further studies should investigate the feasibility of the BCI device for home-based testing as well as for detecting visual function loss over time.


Asunto(s)
Ceguera/diagnóstico , Interfaces Cerebro-Computador , Potenciales Evocados Visuales/fisiología , Glaucoma/diagnóstico , Campos Visuales/fisiología , Anciano , Ceguera/etiología , Ceguera/fisiopatología , Diseño de Equipo , Femenino , Estudios de Seguimiento , Glaucoma/complicaciones , Glaucoma/fisiopatología , Humanos , Presión Intraocular , Masculino , Estudios Prospectivos , Curva ROC
20.
Front Hum Neurosci ; 8: 182, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24744718

RESUMEN

Recent advances in mobile electroencephalogram (EEG) systems, featuring non-prep dry electrodes and wireless telemetry, have enabled and promoted the applications of mobile brain-computer interfaces (BCIs) in our daily life. Since the brain may behave differently while people are actively situated in ecologically-valid environments versus highly-controlled laboratory environments, it remains unclear how well the current laboratory-oriented BCI demonstrations can be translated into operational BCIs for users with naturalistic movements. Understanding inherent links between natural human behaviors and brain activities is the key to ensuring the applicability and stability of mobile BCIs. This study aims to assess the quality of steady-state visual-evoked potentials (SSVEPs), which is one of promising channels for functioning BCI systems, recorded using a mobile EEG system under challenging recording conditions, e.g., walking. To systematically explore the effects of walking locomotion on the SSVEPs, this study instructed subjects to stand or walk on a treadmill running at speeds of 1, 2, and 3 mile (s) per hour (MPH) while concurrently perceiving visual flickers (11 and 12 Hz). Empirical results of this study showed that the SSVEP amplitude tended to deteriorate when subjects switched from standing to walking. Such SSVEP suppression could be attributed to the walking locomotion, leading to distinctly deteriorated SSVEP detectability from standing (84.87 ± 13.55%) to walking (1 MPH: 83.03 ± 13.24%, 2 MPH: 79.47 ± 13.53%, and 3 MPH: 75.26 ± 17.89%). These findings not only demonstrated the applicability and limitations of SSVEPs recorded from freely behaving humans in realistic environments, but also provide useful methods and techniques for boosting the translation of the BCI technology from laboratory demonstrations to practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA