Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281211

RESUMEN

To reveal the mechanism of temperature preference in Tuta absoluta, one of the top 20 plant pests in the world, we cloned and identified TaTRPA1, TaPain, and TaPyx genes by RACE and bioinformatic analysis, and clarified their expression profiles during different development stages using real-time PCR, and revealed their function in preference temperature by RNAi. The full-length cDNA of TaPain was 3136 bp, with a 2865-bp open reading frame encoding a 259.89-kDa protein; and the partial length cDNA of TaPyx was 2326-bp, with a 2025-bp open reading frame encoding a 193.16-kDa protein. In addition, the expression of TaTRPA1 and TaPyx was significantly lower in larvae than other stages, and it was significantly higher in pupae and newly emerging males for TaPain. After feeding target double-stranded RNA (dsRNA), the preferred temperature decreased 2 °C more than the control group. In conclusion, the results firstly indicated the molecular characterization of TRPA subfamily genes and their key role in temperature perception in T. absoluta, and the study will help us to understand the temperature-sensing mechanism in the pest, and will provide some basis for study of other Lepidoptera insects' temperature preference. Moreover, it is of great significance in enriching the research progress of "thermos TRP".


Asunto(s)
Mariposas Nocturnas/genética , Canal Catiónico TRPA1/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Conducta Animal , Femenino , Larva/metabolismo , Masculino , Mariposas Nocturnas/metabolismo , Pupa/metabolismo , Temperatura
2.
Inorg Chem ; 58(12): 7645-7648, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31124667

RESUMEN

We report the synthesis, characterization, and photophysical and photochemical properties of [Ru(bpy)2(py)2]2+@Zn-oxalate metal-organic framework (Ru@MOF; bpy is 2,2'-bipyridine and py is pyridine). In Ru@MOF, the cavities of the anionic Zn-oxalate MOF tightly encapsulate [Ru(bpy)2(py)2]2+ complexes, thereby altering the vibrational and electronic states of [Ru(bpy)2(py)2]2+ and preventing photosubstitution of py ligands. [Ru(bpy)2(py)2]2+ in Ru@MOF exhibits significantly increased photoluminescence lifetime and quantum yield, likely through destabilizing the dd state and enhancing photochemical stability.

3.
J Am Chem Soc ; 140(1): 433-440, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29211477

RESUMEN

Titania (TiO2) is widely used in the chemical industry as an efficacious catalyst support, benefiting from its unique strong metal-support interaction. Many proposals have been made to rationalize this effect at the macroscopic level, yet the underlying molecular mechanism is not understood due to the presence of multiple catalytic species on the TiO2 surface. This challenge can be addressed with metal-organic frameworks (MOFs) featuring well-defined metal oxo/hydroxo clusters for supporting single-site catalysts. Herein we report that the Ti8(µ2-O)8(µ2-OH)4 node of the Ti-BDC MOF (MIL-125) provides a single-site model of the classical TiO2 support to enable CoII-hydride-catalyzed arene hydrogenation. The catalytic activity of the supported CoII-hydride is strongly dependent on the reduction of the Ti-oxo cluster, definitively proving the pivotal role of TiIII in the performance of the supported catalyst. This work thus provides a molecularly precise model of Ti-oxo clusters for understating the strong metal-support interaction of TiO2-supported heterogeneous catalysts.

4.
J Am Chem Soc ; 139(20): 7004-7011, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28478673

RESUMEN

We report here the synthesis of a robust and porous metal-organic framework (MOF), Zr12-TPDC, constructed from triphenyldicarboxylic acid (H2TPDC) and an unprecedented Zr12 secondary building unit (SBU): Zr12(µ3-O)8(µ3-OH)8(µ2-OH)6. The Zr12-SBU can be viewed as an inorganic node dimerized from two commonly observed Zr6 clusters via six µ2-OH groups. The metalation of Zr12-TPDC SBUs with CoCl2 followed by treatment with NaBEt3H afforded a highly active and reusable solid Zr12-TPDC-Co catalyst for the hydrogenation of nitroarenes, nitriles, and isocyanides to corresponding amines with excellent activity and selectivity. This work highlights the opportunity in designing novel MOF-supported single-site solid catalysts by tuning the electronic and steric properties of the SBUs.

5.
J Am Chem Soc ; 139(33): 11325-11328, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28797163

RESUMEN

We report the stepwise and quantitative transformation of the Zr6(µ3-O)4(µ3-OH)4(HCO2)6 nodes in Zr-BTC (MOF-808) to the [Zr6(µ3-O)4(µ3-OH)4Cl12]6- nodes in ZrCl2-BTC, and then to the organometallic [Zr6(µ3-O)4(µ3-OLi)4R12]6- nodes in ZrR2-BTC (R = CH2SiMe3 or Me). Activation of ZrCl2-BTC with MMAO-12 generates ZrMe-BTC, which is an efficient catalyst for ethylene polymerization. ZrMe-BTC displays unusual electronic and steric properties compared to homogeneous Zr catalysts, possesses multimetallic active sites, and produces high-molecular-weight linear polyethylene. Metal-organic framework nodes can thus be directly transformed into novel single-site solid organometallic catalysts without homogeneous analogs for polymerization reactions.

6.
J Am Chem Soc ; 139(49): 17747-17750, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29179548

RESUMEN

Molecular iridium catalysts immobilized in metal-organic frameworks (MOFs) were positioned in the condensing chamber of a Soxhlet extractor for efficient CO2 hydrogenation. Droplets of hot water seeped through the MOF catalyst to create dynamic gas/liquid interfaces which maximize the contact of CO2, H2, H2O, and the catalyst to achieve a high turnover frequency of 410 h-1 under atmospheric pressure and at 85 °C. H/D kinetic isotope effect measurements and density functional theory calculations revealed concerted proton-hydride transfer in the rate-determining step of CO2 hydrogenation, which was difficult to unravel in homogeneous reactions due to base-catalyzed H/D exchange.

7.
J Am Chem Soc ; 139(20): 7020-7029, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28467852

RESUMEN

The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal-organic layers (2D-MOLs) and three-dimensional metal-organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3″-nitro-4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal-ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.

8.
Faraday Discuss ; 201: 303-315, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28627532

RESUMEN

We report here the synthesis of a robust and highly porous Fe-phenanthroline-based metal-organic framework (MOF) and its application in catalyzing challenging inter- and intramolecular C-H amination reactions. For the intermolecular amination reactions, a FeBr2-metalated MOF selectively functionalized secondary benzylic and allylic C-H bonds. The intramolecular amination reactions utilizing organic azides as the nitrene source required the reduction of the FeBr2-metalated MOF with NaBHEt3 to generate the active catalyst. For both reactions, Fe or Zr leaching was less than 0.1%, and MOFs could be recycled and reused with no loss in catalytic activity. Furthermore, MOF catalysts were significantly more active than the corresponding homogeneous analogs. This work demonstrates the great potential of MOFs in generating highly active, recyclable, and reusable earth abundant metal catalysts for challenging organic transformations.

9.
Angew Chem Int Ed Engl ; 56(40): 12102-12106, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28804945

RESUMEN

We report the rational design of metal-organic layers (MOLs) that are built from [Hf6 O4 (OH)4 (HCO2 )6 ] secondary building units (SBUs) and Ir[bpy(ppy)2 ]+ - or [Ru(bpy)3 ]2+ -derived tricarboxylate ligands (Hf-BPY-Ir or Hf-BPY-Ru; bpy=2,2'-bipyridine, ppy=2-phenylpyridine) and their applications in X-ray-induced photodynamic therapy (X-PDT) of colon cancer. Heavy Hf atoms in the SBUs efficiently absorb X-rays and transfer energy to Ir[bpy(ppy)2 ]+ or [Ru(bpy)3 ]2+ moieties to induce PDT by generating reactive oxygen species (ROS). The ability of X-rays to penetrate deeply into tissue and efficient ROS diffusion through ultrathin 2D MOLs (ca. 1.2 nm) enable highly effective X-PDT to afford superb anticancer efficacy.


Asunto(s)
Estructuras Metalorgánicas/química , Nanotecnología , Fotoquimioterapia , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Análisis de Fourier , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Difracción de Polvo , Especies Reactivas de Oxígeno/química , Compuestos de Rutenio/química , Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Angew Chem Int Ed Engl ; 56(33): 9704-9709, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28543992

RESUMEN

Microenvironments in enzymes play crucial roles in controlling the activities and selectivities of reaction centers. Herein we report the tuning of the catalytic microenvironments of metal-organic layers (MOLs), a two-dimensional version of metal-organic frameworks (MOFs) with thickness down to a monolayer, to control product selectivities. By modifying the secondary building units (SBUs) of MOLs with monocarboxylic acids, such as gluconic acid, we changed the hydrophobicity/hydrophilicity around the active sites and fine-tuned the selectivity in photocatalytic oxidation of tetrahydrofuran (THF) to exclusively afford butyrolactone (BTL), likely a result of prolonging the residence time of reaction intermediates in the hydrophilic microenvironment of catalytic centers. Our work highlights new opportunities in using functional MOLs as highly tunable and selective two-dimensional catalytic materials.

11.
J Am Chem Soc ; 138(31): 9783-6, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27452528

RESUMEN

Mono(phosphine)-M (M-PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal-organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C-H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M-PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

12.
J Am Chem Soc ; 138(45): 14860-14863, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27792322

RESUMEN

We report the stepwise, quantitative transformation of CeIV6(µ3-O)4(µ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal-organic framework (MOF) into the first CeIII6(µ3-O)4(µ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

13.
J Am Chem Soc ; 138(10): 3501-9, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26885768

RESUMEN

We have designed a strategy for postsynthesis installation of the ß-diketiminate (NacNac) functionality in a metal-organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp(3) C-H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp(3) C-H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity. Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700,000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.

14.
J Am Chem Soc ; 138(37): 12234-42, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27598720

RESUMEN

We report here the synthesis of robust and porous metal-organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M8(µ2-O)8(µ2-OH)4 and octahedral M6(µ3-O)4(µ3-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight M(IV) ions in a cubic fashion linked by eight µ2-oxo and four µ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis.

15.
J Am Chem Soc ; 138(16): 5308-15, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27016183

RESUMEN

Metal-organic frameworks (MOFs) with light-harvesting building blocks designed to mimic photosynthetic chromophore arrays in green plants provide an excellent platform to study exciton transport in networks with well-defined structures. A step-by-step exciton random hopping model made of the elementary steps of energy transfer between only the nearest neighbors is usually used to describe the transport dynamics. Although such a nearest neighbor approximation is valid in describing the energy transfer of triplet states via the Dexter mechanism, we found it inadequate in evaluating singlet exciton migration that occurs through the Förster mechanism, which involves one-step jumping over longer distance. We measured migration rates of singlet excitons on two MOFs constructed from truxene-derived ligands and zinc nodes, by monitoring energy transfer from the MOF skeleton to a coumarin probe in the MOF cavity. The diffusivities of the excitons on the frameworks were determined to be 1.8 × 10(-2) cm(2)/s and 2.3 × 10(-2) cm(2)/s, corresponding to migration distances of 43 and 48 nm within their lifetimes, respectively. "Through space" energy-jumping beyond nearest neighbor accounts for up to 67% of the energy transfer rates. This finding presents a new perspective in the design and understanding of highly efficient energy transport networks for singlet excited states.

16.
Angew Chem Int Ed Engl ; 55(44): 13739-13743, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27712019

RESUMEN

A series of porous twofold interpenetrated In-CoIII (porphyrin) metal-organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII (porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII (porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII (porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

17.
Angew Chem Int Ed Engl ; 55(22): 6411-6, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27094346

RESUMEN

Metal-organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni-containing polyoxometalate (POM) [Ni4 (H2 O)2 (PW9 O34 )2 ](10-) (Ni4 P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4 P2 to multiple photosensitizers in Ni4 P2 @MOF allows for facile multi-electron transfer to enable efficient visible-light-driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4 P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.

18.
Angew Chem Int Ed Engl ; 55(16): 4962-6, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26954885

RESUMEN

Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

19.
J Am Chem Soc ; 137(38): 12241-8, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26335305

RESUMEN

We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee's) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ee's. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.


Asunto(s)
Naftalenos/química , Compuestos Organometálicos/química , Ciclización , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Tamaño de la Partícula , Porosidad , Estereoisomerismo , Propiedades de Superficie
20.
J Am Chem Soc ; 137(9): 3197-200, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25712689

RESUMEN

A simple and effective charge-assisted self-assembly process was developed to encapsulate a noble-metal-free polyoxometalate (POM) inside a porous and phosphorescent metal-organic framework (MOF) built from [Ru(bpy)3](2+)-derived dicarboxylate ligands and Zr6(µ3-O)4(µ3-OH)4 secondary building units. Hierarchical organization of photosensitizing and catalytic proton reduction components in such a POM@MOF assembly enables fast multielectron injection from the photoactive framework to the encapsulated redox-active POMs upon photoexcitation, leading to efficient visible-light-driven hydrogen production. Such a modular and tunable synthetic strategy should be applicable to the design of other multifunctional MOF materials with potential in many applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA