Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Plant Cell ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447960

RESUMEN

Cotton (Gossypium hirsutum) fibers, vital natural textile materials, are single-cell trichomes that differentiate from the ovule epidermis. These fibers are categorized as lint (longer fibers useful for spinning) or fuzz (shorter, less useful fibers). Currently, developing cotton varieties with high lint yield but without fuzz remains challenging due to our limited knowledge of the molecular mechanisms underlying fiber initiation. This study presents the identification and characterization of a naturally occurring dominant negative mutation GhMYB25-like_AthapT, which results in a reduced lint and fuzzless phenotype. The GhMYB25-like_AthapT protein exerts its dominant negative effect by suppressing the activity of GhMYB25-like during lint and fuzz initiation. Intriguingly, the negative effect of GhMYB25-like_AthapT could be alleviated by high expression levels of GhMYB25-like. We also uncovered the role of GhMYB25-like in regulating the expression of key genes such as GhPDF2 (PROTODERMAL FACTOR 2), CYCD3; 1 (CYCLIN D3; 1) and PLD (Phospholipase D), establishing its significance as a pivotal transcription factor in fiber initiation. We identified other genes within this regulatory network, expanding our understanding of the determinants of fiber cell fate. These findings offer valuable insights for cotton breeding and contribute to our fundamental understanding of fiber development.

2.
Plant J ; 113(1): 145-159, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453190

RESUMEN

Structural variations (SVs) are critical factors affecting genome evolution and important traits. However, identification results and functional analyses of SVs in upland cotton are rare. Here, based on the genetic relationships, breeding history and cumulative planting area of upland cotton in China, nine predominant cultivars from the past 60 years (1950s-2010s) were selected for long read sequencing to uncover genic variations and breeding improvement targets for this crop. Based on the ZM24 reference genome, 0.88-1.47 × 104 SVs per cultivar were identified, and an SV set was constructed. SVs affected the expression of a large number of genes during fiber elongation, and a transposable element insertion resulted in the glandless phenotype in upland cotton. Six widespread inversions were identified based on nine draft genomes and high-throughput chromosome conformation capture data. Multiple haplotype blocks that were always associated with aggregated SVs were demonstrated to play a pivotal role in the agronomic traits of upland cotton and drove its adaptation to the northern planting region. Exotic introgression was the source of these haplotype blocks and increased the genetic diversity of upland cotton. Our results enrich the genome resources of upland cotton, and the identified SVs will promote genetic and breeding research in cotton.


Asunto(s)
Fitomejoramiento , Sitios de Carácter Cuantitativo , Fenotipo , Haplotipos , Alelos , Gossypium/genética , Fibra de Algodón
3.
Plant Physiol ; 189(3): 1466-1481, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35289870

RESUMEN

Red foliated cotton is a typical dominant mutation trait in upland cotton (Gossypium hirsutum). Although mutants have been described, few responsible genes have been identified and characterized. In this study, we performed map-based cloning of the red foliated mutant gene (Re) derived from the cross between G. hirsutum cv. Emian22 and G. barbadense acc. 3-79. Through expression profiling, metabolic pathway analysis, and sequencing of candidate genes, Re was identified as an MYB113 transcription factor. A repeat sequence variation in the promoter region increased the activity of the promoter, which enhanced the expression of Re. Re expression driven by the 35S promoter produced a red foliated phenotype, as expected. When the gene was driven by a fiber elongation-specific promoter, promoter of α-expansin 2 (PGbEXPA2), Re was specifically expressed in 5- to 10-day post-anthesis fibers rather than in other tissues, resulting in brown mature fibers. Re responded to light through phytochrome-interacting factor 4 and formed a dimer with transparent testa 8, which increased its expression as well as that of anthocyanin synthase and UDP-glucose:flavonoid 3-o-glucosyl transferase, and thus activated the entire anthocyanin metabolism pathway. Our research has identified the red foliated mutant gene in cotton, which paves the way for detailed studies of anthocyanin and proanthocyanidin metabolism and pigment accumulation in cotton and provides an alternative strategy for producing brown fiber.


Asunto(s)
Gossypium , Proantocianidinas , Antocianinas/metabolismo , Fibra de Algodón , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Fenotipo , Proantocianidinas/metabolismo
4.
Theor Appl Genet ; 136(6): 130, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199762

RESUMEN

KEY MESSAGE: Genomic and genetic resources of G. mustelinum were effective for identifying genes for qualitative and quantitative traits. Gossypium mustelinum represents the earliest diverging evolutionary lineage of polyploid Gossypium, representing a rich gene pool for numerous desirable traits lost in cotton cultivars. Accurate information of the genomic features and the genetic architecture of objective traits are essential for the discovery and utilization of G. mustelinum genes. Here, we presented a chromosome-level genome assembly of G. mustelinum and developed an introgression population of the G. mustelinum in the background of G. hirsutum that contained 264 lines. We precisely delimited the boundaries of the 1,662 introgression segments with the help of G. mustelinum genome assembly, and 87% of crossover regions (COs) were less than 5 Kb. Genes for fuzzless and green fuzz were discovered, and a total of 14 stable QTLs were identified with 12 novel QTLs across four independent environments. A new fiber length QTL, qUHML/SFC-A11, was confined to a 177-Kb region, and GmOPB4 and GmGUAT11 were considered as the putative candidate genes as potential negative regulator for fiber length. We presented a genomic and genetic resource of G. mustelinum, which we demonstrated that it was efficient for identifying genes for qualitative and quantitative traits. Our study built a valuable foundation for cotton genetics and breeding.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/genética , Mapeo Cromosómico , Fitomejoramiento , Sitios de Carácter Cuantitativo
5.
Funct Integr Genomics ; 23(1): 25, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576593

RESUMEN

Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G. hirsutum (CMS-(AD)1), G. barbadense (CMS-(AD)2), G. harknessii (CMS-D2), and G. trilobum (CMS-D8) cytoplasms were first created by multiple backcrosses with common genotype Shikang126. Then, 64 pairs of mitochondrial simple sequence repeat (mtSSR) markers were designed to explore the mitochondrial DNA diversities among four isonuclear-alloplasmic cotton male sterile lines, and a total of nine pairs of polymorphic mtSSR molecular markers were successfully developed. Polymorphism analysis indicated that mtSSR59 marker correlated to the atp1 gene could effectively divide the CMS-D2, CMS-(AD)1, and CMS-(AD)2 in one category while the CMS-D8 in another category. Further cytological observation and determination of ATP contents also confirmed the accurate classification of CMS-D2 and CMS-D8 lines. Moreover, the mtSSR59 marker was successfully applied in the marker-assisted selection (MAS) for breeding new male sterile lines and precise differentiation or purity identification of different CMS-based "three-line" and conventional cotton hybrids. This study provides new technical measures for classifying various cytoplasmic sterile lines, and our results will significantly improve the efficiency of there-line hybrid breeding in cotton.


Asunto(s)
ADN Mitocondrial , Infertilidad Vegetal , Citoplasma/genética , ADN Mitocondrial/genética , Infertilidad Vegetal/genética , Gossypium/genética
6.
Theor Appl Genet ; 135(2): 637-652, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34811574

RESUMEN

KEY MESSAGE: Rf candidate genes were related to the super D05_PPR-cluster and verified to be individually nonfunctional. Restorer of fertility (Rf) genes of cytoplasmic male sterility (CMS) is commonly found to be PPR (pentatricopeptide repeat) genes, which are mostly located in a cluster of PPR genes with high similarity. Here, Homocap-seq was applied to analyze PPR clusters in 'three lines,' and we found broad variations within the D05_PPR-cluster in a restorer line and deduced that the D05_PPR-cluster was associated with fertility restoration. Genetic mapping of Rf and Homocap-seq analysis of three genotypes in the F2 population validated that the D05_PPR-cluster was the origin of Rf. Three Rf candidates were cloned that were the most actively expressed genes in the D05_PPR-cluster in the restorer line as revealed by their high-depth amplicons. However, further transgenic experiments showed that none of the candidates could restore fertility of the CMS line independently. Then, the members of the brand-new super D05_PPR-cluster in the restorer line, containing 14 full-length PPRs and at least 13 PPR homologous sequences, were identified by long-read resequencing, which validated the effectiveness of variation and expression prediction of Homocap-seq. Additionally, we found that several PPR duplications, including 2 of the 3 Rf candidates, had undergone site-specific selection as potentially important anther development-associated genes. Finally, we proposed that multiple PPRs were coordinately responsible for the fertility restoration of the CMS line.


Asunto(s)
Fertilidad , Infertilidad Vegetal , Mapeo Cromosómico , Citoplasma , Fertilidad/genética , Gossypium , Infertilidad Vegetal/genética
7.
Theor Appl Genet ; 135(12): 4483-4494, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36216960

RESUMEN

KEY MESSAGE: A fiber length QTL, qFL-c10-1, was fine-mapped to a 96.5-kb region containing one gene that has not been characterized in plants. Fiber length is an important component of cotton fiber quality, which is associated with other quality properties such as fiber strength, fiber maturity, and fineness. In our previous studies, a stable QTL qFL-c10-1 controlling fiber length had been identified on chromosome A10 in an upland cotton recombinant inbred line (RIL) population from a cross between Jimian5 and DH962. To fine-map qFL-c10-1, an F2 population with 1081 individual plants from a cross between a recombinant line DJ61 and Jimian5 was established. Using linkage analysis and progeny recombination experiment, qFL-c10-1 was mapped into a 96.5-kb genomic region that just contained one proper transcript Ghir_A10G022020 (described as GhFL10), an undescribed gene in plants. One 214-bp deletion was identified in the promoter region of DJ61 compared with Jimian5. Quantitative real-time PCR (qRT-PCR) and comparative analysis of parental sequences suggested that GhFL10 was the most promising candidate gene for qFL-c10-1. According to RNA-seq, yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC), we speculate that GhFL10 interacts with NF-YA transcription factors to negatively regulate fiber elongation.


Asunto(s)
Gossypium , Sitios de Carácter Cuantitativo , Gossypium/genética , Mapeo Cromosómico , Fenotipo , Fibra de Algodón , Estudios de Asociación Genética
8.
Theor Appl Genet ; 135(10): 3375-3391, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35999283

RESUMEN

In order to understand the molecular mechanism of cotton's response to drought during the flowering and boll stage, transcriptomics and metabolomics were carried out for two introgression lines (drought-tolerant line: T307; drought-sensitive line: S48) which were screened from Gossypium hirsutum cv. 'Emian22' with some gene fragments imported from Gossypium barbadense acc. 3-79, under drought stress by withdrawing water at flowering and boll stage. Results showed that the basic drought response in cotton included a series of broad-spectrum responses, such as amino acid synthesis, hormone (abscisic acid, ABA) signal transduction, and mitogen-activated protein kinases signal transduction pathway, which activated in both drought-tolerant and drought-sensitive lines. However, the difference of their imported fragments and diminished sequences triggers endoplasmic reticulum (ER) protein processing, photosynthetic-related pathways (in leaves), and membrane solute transport (in roots) in drought-tolerant line T307, while these are missed or not activated in drought-sensitive line S48, reflecting the different drought tolerance of the two genotypes. Virus-induced gene silencing assay of drought-tolerant differentially expressed heat shock protein (HSP) genes (mainly in leaf) and ATP-binding cassette (ABC) transporter genes (mainly in roots) indicated that those genes play important role in cotton drought tolerant. Combined analysis of transcriptomics and metabolomics highlighted the important roles of ER-stress-related HSP genes and root-specific ABC transporter genes in plants drought tolerance. These results provide new insights into the molecular mechanisms underlying the drought stress adaptation in cotton.


Asunto(s)
Sequías , Gossypium , Transportadoras de Casetes de Unión a ATP/genética , Ácido Abscísico , Adenosina Trifosfato , Aminoácidos , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Choque Térmico/genética , Hormonas , Metaboloma , Proteínas Quinasas Activadas por Mitógenos/genética , Estrés Fisiológico/genética , Transcriptoma , Agua
9.
Genomics ; 113(4): 1999-2009, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915244

RESUMEN

The high-quality reference-grade genome for Gossupium tomentosum can greatly promote the progress in biological research and introgression breeding for the mainly cultivated species, G. hirsutum. Here, we report a high-quality genome assembly for G. tomentosum by integrating PacBio and Hi-C technologies. Comparative genomic analysis revealed a large number of genetic variations. Two re-sequencing-based ultra-dense genetic maps were constructed which comprised 4,047,199 and 6,009,681 SNPs, 4120 and 4599 bins and covering 4126.36 cM and 4966.72 cM in the EMF2 (F2 from G. hirsutum × G. tomentosum) and GHF2 (F2 from G. hirsutum × G. barbadense). The EMF2 exhibited lower recombination rate at the whole-genome level as compared with GHF2. We mapped 22 and 33 QTL associated with crossover frequency and predicted Gh_MRE11 and Gh_FIGL1 as the candidate genes governing crossover in the EMF2 and GHF2, respectively. We identified 13 significant QTL that regulate the floral transition, and revealed that Gh_AGL18 was associated with the floral transition. Therefore, our study provides a valuable genomic resource to support a better understanding of cotton interspecific cross and recombination landscape for genetic improvement and breeding in cotton.


Asunto(s)
Cromosomas de las Plantas , Gossypium , Mapeo Cromosómico , Depresión , Genoma de Planta , Genómica , Gossypium/genética , Fitomejoramiento , Recombinación Genética
10.
Plant J ; 103(2): 677-689, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246786

RESUMEN

The two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G. barbadense (Pima cotton) elite cultivars. We collected 159 G. hirsutum and 70 G. barbadense cultivars developed in Xinjiang, China, along with 30 semi-wild accessions of G. hirsutum, to perform interspecific introgression tests, intraspecific selection analyses and genome-wide association studies (GWAS) with fibre quality and yield component traits in multiple environments. In total, we identified seven interspecific introgression events and 52 selective sweep loci in G. hirsutum, as well as 17 interspecific introgression events and 19 selective sweep loci in G. barbadense. Correlation tests between agronomic traits and introgressions showed that introgression loci were mutually beneficial for the improvement of fibre quality and yield traits in both species. In addition, the phenotypic effects of four interspecific introgression events could be detected by intraspecific GWAS, with Gb_INT13 significantly improving fibre yield in G. barbadense. The present study describes the landscape of genetic introgression and selection between the two species, and highlights the genetic effects of introgression among populations, which can be used for future improvement of fibre yield and quality in G. barbadense and G. hirsutum, respectively.


Asunto(s)
Introgresión Genética/genética , Variación Genética/genética , Gossypium/genética , Carácter Cuantitativo Heredable , China , Mapeo Cromosómico , Fibra de Algodón , Producción de Cultivos , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Gossypium/crecimiento & desarrollo
11.
BMC Plant Biol ; 21(1): 102, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602142

RESUMEN

BACKGROUND: Gossypium hirsutum L. (cotton) is one of the most economically important crops in the world due to its significant source of fiber, feed, foodstuff, oil and biofuel products. However, the utilization of cottonseed was limited due to the presence of small and darkly pigmented glands that contain large amounts of gossypol, which is toxic to human beings and non-ruminant animals. To date, some progress has been made in the pigment gland formation, but the underlying molecular mechanism of its formation was still unclear. RESULTS: In this study, we identified an AP2/ERF transcription factor named GhERF105 (GH_A12G2166), which was involved in the regulation of gland pigmentation by the comparative transcriptome analysis of the leaf of glanded and glandless plants. It encoded an ERF protein containing a converved AP2 domain which was localized in the nucleus with transcriptional activity, and showed the high expression in glanded cotton accessions that contained much gossypol. Virus-induced gene silencing (VIGS) against GhERF105 caused the dramatic reduction in the number of glands and significantly lowered levels of gossypol in cotton leaves. GhERF105 showed the patterns of spatiotemporal and inducible expression in the glanded plants. CONCLUSIONS: These results suggest that GhERF105 contributes to the pigment gland formation and gossypol biosynthesis in partial organs of glanded plant. It also provides a potential molecular basis to generate 'glandless-seed' and 'glanded-plant' cotton cultivar.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/química , Gossypium/metabolismo , Gosipol/análisis , Gosipol/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética
12.
Plant Biotechnol J ; 19(6): 1170-1182, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33382517

RESUMEN

To enrich our knowledge about gene network of fatty acid biosynthesis in cottonseed, we conducted comparative transcriptome to reveal the differences in gene expression between Gossypium hirsutum and Gossypium barbadense during cottonseed development. The prolonged expression period and increased expression abundance of oil-related genes are the main reasons for producing high seed oil content (SOC) in G. barbadense, which manifested as the bias of homeologous gene expression in Dt-subgenome after 25 day postanthesis (DPA). The dynamic expression profile showed that SAD6 and FATA are more important for oil biosynthesis in G. barbadense than that in G. hirsutum. Three key transcription factors, WRI1, NF-YB6 and DPBF2, showed their elite roles in regulating seed oil in cotton. We observed that sequence variations in the promoter region of BCCP2 genes might contribute to its divergence in expression level between the two species. Based on the quantitative trait loci (QTL) information of the seed oil content and utilizing additional G. barbadense introgression lines (ILs), we propose 21 candidate genes on the basis of their differential expression level, of which the GbSWEET and the GbACBP6 showed the potential functional to improve the oil content. Taken together, studying the different expression of oil-related genes and their genetic regulation mechanisms between G. hirsutum and G. barbadense provide new insights to understanding the mechanism of fatty acid biosynthesis network and fatty acid genetic improving breeding in cotton.


Asunto(s)
Gossypium , Tetraploidía , Redes Reguladoras de Genes , Gossypium/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
13.
Theor Appl Genet ; 134(8): 2459-2468, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33912997

RESUMEN

KEY MESSAGE: One sub-MAGIC population was genotyped using SLAF-seq, and QTLs and candidate genes for agronomic traits were identified in Upland cotton. The agronomic traits of Upland cotton have serious impacts on cotton production, as well as economic benefits. To discover the genetic basis of important agronomic traits in Upland cotton, a subset MAGIC (multi-parent advanced generation inter-cross) population containing 372 lines (SMLs) was selected from an 8-way MAGIC population with 960 lines. The 372 lines and 8 parents were phenotyped in six environments and deeply genotyped by SLAF-seq with 60,495 polymorphic SNPs. The genetic diversity indexes of all SNPs were 0.324 and 0.362 for the parents and MAGIC lines, respectively. The LD decay distance of the SMLs was 600 kb (r2 = 0.1). Genome-wide association mapping was performed using 60,495 SNPs and the phenotypic data of the SMLs, and 177 SNPs were identified to be significantly associated with 9 stable agronomic traits in multiple environments. The identified SNPs were divided into 117 QTLs (quantitative trait loci) by LD decay distance, explaining 5.44% to 31.64% of the phenotypic variation. Among the 117 QTLs, 3 QTLs were stable in multiple environments, and 11 QTL regions were proven to have pleiotropism associated with multiple traits. Within QTL regions, 154 genes were preferentially expressed in correlated tissues, and 8 genes with known functions were identified as priori candidate genes. Two genes, GhACT1 and GhGASL3, reported to have clear functions, were, respectively, located in qFE-A05-4 and qFE-D04-3, two stable QTLs for FE. This study revealed the genetic basis of important agronomic traits of Upland cotton, and the results will facilitate molecular breeding in cotton.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Genética de Población , Genoma de Planta , Gossypium/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Gossypium/crecimiento & desarrollo
14.
Plant J ; 99(3): 494-505, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002209

RESUMEN

Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population-scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population-scaled recombination rate between Gossypium hirsutum and G. arboreum and sub-genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome-wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high-recombination regions than were those of yield and early maturity traits. These results provide insights into the population-scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.


Asunto(s)
Fibra de Algodón/normas , Genoma de Planta/genética , Genómica/métodos , Gossypium/genética , Recombinación Genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo , Genotipo , Gossypium/clasificación , Fenotipo , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie
15.
BMC Genomics ; 21(1): 431, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586283

RESUMEN

BACKGROUND: The low genetic diversity of Upland cotton limits the potential for genetic improvement. Making full use of the genetic resources of Sea-island cotton will facilitate genetic improvement of widely cultivated Upland cotton varieties. The chromosome segments substitution lines (CSSLs) provide an ideal strategy for mapping quantitative trait loci (QTL) in interspecific hybridization. RESULTS: In this study, a CSSL population was developed by PCR-based markers assisted selection (MAS), derived from the crossing and backcrossing of Gossypium hirsutum (Gh) and G. barbadense (Gb), firstly. Then, by whole genome re-sequencing, 11,653,661 high-quality single nucleotide polymorphisms (SNPs) were identified which ultimately constructed 1211 recombination chromosome introgression segments from Gb. The sequencing-based physical map provided more accurate introgressions than the PCR-based markers. By exploiting CSSLs with mutant morphological traits, the genes responding for leaf shape and fuzz-less mutation in the Gb were identified. Based on a high-resolution recombination bin map to uncover genetic loci determining the phenotypic variance between Gh and Gb, 64 QTLs were identified for 14 agronomic traits with an interval length of 158 kb to 27 Mb. Surprisingly, multiple alleles of Gb showed extremely high value in enhancing cottonseed oil content (SOC). CONCLUSIONS: This study provides guidance for studying interspecific inheritance, especially breeding researchers, for future studies using the traditional PCR-based molecular markers and high-throughput re-sequencing technology in the study of CSSLs. Available resources include candidate position for controlling cotton quality and quantitative traits, and excellent breeding materials. Collectively, our results provide insights into the genetic effects of Gb alleles on the Gh, and provide guidance for the utilization of Gb alleles in interspecific breeding.


Asunto(s)
Introgresión Genética , Gossypium/anatomía & histología , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Aceite de Semillas de Algodón/análisis , Gossypium/química , Gossypium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Tetraploidía
16.
Plant Biotechnol J ; 18(12): 2533-2544, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32558152

RESUMEN

Drought resistance (DR) is a complex trait that is regulated by a variety of genes. Without comprehensive profiling of DR-related traits, the knowledge of the genetic architecture for DR in cotton remains limited. Thus, there is a need to bridge the gap between genomics and phenomics. In this study, an automatic phenotyping platform (APP) was systematically applied to examine 119 image-based digital traits (i-traits) during drought stress at the seedling stage, across a natural population of 200 representative upland cotton accessions. Some novel i-traits, as well as some traditional i-traits, were used to evaluate the DR in cotton. The phenomics data allowed us to identify 390 genetic loci by genome-wide association study (GWAS) using 56 morphological and 63 texture i-traits. DR-related genes, including GhRD2, GhNAC4, GhHAT22 and GhDREB2, were identified as candidate genes by some digital traits. Further analysis of candidate genes showed that Gh_A04G0377 and Gh_A04G0378 functioned as negative regulators for cotton drought response. Based on the combined digital phenotyping, GWAS analysis and transcriptome data, we conclude that the phenomics dataset provides an excellent resource to characterize key genetic loci with an unprecedented resolution which can inform future genome-based breeding for improved DR in cotton.


Asunto(s)
Sequías , Estudio de Asociación del Genoma Completo , Gossypium/genética , Fenómica , Fenotipo , Polimorfismo de Nucleótido Simple
17.
J Integr Plant Biol ; 61(1): 45-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30565413

RESUMEN

An allopolyploidization event formed allotetraploid Gossypium species from an A-genome diploid species and a D-genome diploid species. To explore the responses of transposable elements (TEs) to allopolyploidy, we assembled parallel TE datasets from G. hirsutum, G. arboreum and G. raimondii and analyzed the TE types and the effects of TEs on orthologous gene expression in the three Gossypium genomes. Gypsy was the most abundant TE type and most TEs were located ∼500 bp from genes in all three genomes. In G. hirsutum, 35.6% of genes harbored TE insertions, whereas insertions were more frequent in G. arboreum and G. raimondii. G. hirsutum had the highest proportion of uniquely matching 24-nt small interfering RNAs (siRNAs) that targeted TEs. TEs, particularly those targeted by 24-nt siRNAs, were associated with reduced gene expression, but the effect of TEs on orthologous gene expression varied substantially among species. Orthologous gene expression levels in G. hirsutum were intermediate between those of G. arboreum and G. raimondii, which did not experience TE expansion or reduction resulting from allopolyploidization. This study underscores the diversity of TEs co-opted by host genes and provides insights into the roles of TEs in regulating gene expression in Gossypium.


Asunto(s)
Elementos Transponibles de ADN/genética , Gossypium/genética , ARN Interferente Pequeño/genética , Diploidia , Genoma de Planta/genética
18.
Mol Genet Genomics ; 293(4): 793-805, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29392407

RESUMEN

The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL exploration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic mapping and will facilitate marker-based breeding for fiber quality in cotton.


Asunto(s)
Cruzamientos Genéticos , Gossypium/genética , Fenotipo , Polimorfismo Genético , Carácter Cuantitativo Heredable , Fibra de Algodón
19.
Plant Biotechnol J ; 2018 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-29476651

RESUMEN

Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.

20.
Int J Mol Sci ; 19(1)2018 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-29342893

RESUMEN

The tetraploid species Gossypium hirsutum is cultivated widely throughout the world with high yield and moderate fiber quality, but its genetic basis is narrow. A set of 107 introgression lines (ILs) was developed with an interspecific cross using G. hirsutumacc. 4105 as the recurrent parent and G. tomentosum as the donor parent. A specific locus amplified fragment sequencing (SLAF-seq) strategy was used to obtain high-throughput single nucleotide polymorphism (SNP) markers. In total, 3157 high-quality SNP markers were obtained and further used for identification of quantitative trait loci (QTLs) for fiber quality and yield traits evaluated in multiple environments. In total, 74 QTLs were detected that were associated with five fiber quality traits (30 QTLs) and eight yield traits (44 QTLs), with 2.02-30.15% of the phenotypic variance explained (PVE), and 69 markers were found to be associated with these thirteen traits. Eleven chromosomes in the A sub-genome (At) harbored 47 QTLs, and nine chromosomes in the D sub-genome (Dt) harbored 27 QTLs. More than half (44 QTLs = 59.45%) showed positive additive effects for fiber and yield traits. Five QTL clusters were identified, with three in the At, comprised of thirteen QTLs, and two in the Dt comprised of seven QTLs. The ILs developed in this study and the identified QTLs will facilitate further molecular breeding for improvement of Upland cotton in terms of higher yield with enhanced fiber quality.


Asunto(s)
Fibra de Algodón/normas , Cruzamientos Genéticos , Gossypium/genética , Endogamia , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Análisis de Varianza , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Marcadores Genéticos , Genoma de Planta , Genotipo , Hibridación Genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA