Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Comput Biol ; 18(4): e1010071, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35452457

RESUMEN

The transformation of synaptic input into action potential output is a fundamental single-cell computation resulting from the complex interaction of distinct cellular morphology and the unique expression profile of ion channels that define the cellular phenotype. Experimental studies aimed at uncovering the mechanisms of the transfer function have led to important insights, yet are limited in scope by technical feasibility, making biophysical simulations an attractive complementary approach to push the boundaries in our understanding of cellular computation. Here we take a data-driven approach by utilizing high-resolution morphological reconstructions and patch-clamp electrophysiology data together with a multi-objective optimization algorithm to build two populations of biophysically detailed models of murine hippocampal CA3 pyramidal neurons based on the two principal cell types that comprise this region. We evaluated the performance of these models and find that our approach quantitatively matches the cell type-specific firing phenotypes and recapitulate the intrinsic population-level variability in the data. Moreover, we confirm that the conductance values found by the optimization algorithm are consistent with differentially expressed ion channel genes in single-cell transcriptomic data for the two cell types. We then use these models to investigate the cell type-specific biophysical properties involved in the generation of complex-spiking output driven by synaptic input through an information-theoretic treatment of their respective transfer functions. Our simulations identify a host of cell type-specific biophysical mechanisms that define the morpho-functional phenotype to shape the cellular transfer function and place these findings in the context of a role for bursting in CA3 recurrent network synchronization dynamics.


Asunto(s)
Hipocampo , Neuronas , Potenciales de Acción/fisiología , Animales , Biofisica , Región CA3 Hipocampal/fisiología , Hipocampo/fisiología , Ratones , Neuronas/fisiología , Células Piramidales/fisiología
2.
J Neurosci ; 39(39): 7648-7663, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346031

RESUMEN

Correlated electrical activity in neurons is a prominent characteristic of cortical microcircuits. Despite a growing amount of evidence concerning both spike-count and subthreshold membrane potential pairwise correlations, little is known about how different types of cortical neurons convert correlated inputs into correlated outputs. We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit.SIGNIFICANCE STATEMENT No matter how we probe the brain, we find correlated neuronal activity over a variety of spatial and temporal scales. For the cerebral cortex, significant evidence has accumulated on trial-to-trial covariability in synaptic inputs activation, subthreshold membrane potential fluctuations, and output spike trains. Although we do not yet fully understand their origin and whether they are detrimental or beneficial for information processing, we believe that clarifying how correlations emerge is pivotal for understanding large-scale neuronal network dynamics and computation. Here, we report quantitative differences between excitatory and inhibitory cells, as they relay input correlations into output correlations. We explain this heterogeneity by simple biophysical models and provide the most experimentally validated test of a theory for the emergence of correlations.


Asunto(s)
Interneuronas/fisiología , Modelos Neurológicos , Neocórtex/fisiología , Células Piramidales/fisiología , Animales , Femenino , Técnicas In Vitro , Masculino , Ratas
3.
Eur J Neurosci ; 47(1): 17-32, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29068098

RESUMEN

Ensembles of cortical neurons can track fast-varying inputs and relay them in their spike trains, far beyond the cut-off imposed by membrane passive electrical properties and mean firing rates. Initially explored in silico and later demonstrated experimentally, investigating how neurons respond to sinusoidally modulated stimuli provides a deeper insight into spike initiation mechanisms and information processing than conventional F-I curve methodologies. Besides net membrane currents, physiological synaptic inputs can also induce a stimulus-dependent modulation of the total membrane conductance, which is not reproduced by standard current-clamp protocols. Here, we investigated whether rat cortical neurons can track fast temporal modulations over a noisy conductance background. We also determined input-output transfer properties over a range of conditions, including: distinct presynaptic activation rates, postsynaptic firing rates and variability and type of temporal modulations. We found a very broad signal transfer bandwidth across all conditions, similar large cut-off frequencies and power-law attenuations of fast-varying inputs. At slow and intermediate input modulations, the response gain decreased for increasing output mean firing rates. The gain also decreased significantly for increasing intensities of background synaptic activity, thus generalising earlier studies on F-I curves. We also found a direct correlation between the action potentials' onset rapidness and the neuronal bandwidth. Our novel results extend previous investigations of dynamical response properties to non-stationary and conductance-driven conditions, and provide computational neuroscientists with a novel set of observations that models must capture when aiming to replicate cortical cellular excitability.


Asunto(s)
Potenciales de Acción , Neocórtex/fisiología , Células Piramidales/fisiología , Animales , Femenino , Masculino , Neocórtex/citología , Ratas , Ratas Wistar , Tiempo de Reacción , Potenciales Sinápticos
4.
PLoS Biol ; 12(11): e1002007, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25422947

RESUMEN

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.


Asunto(s)
Neocórtex/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Adolescente , Adulto , Animales , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
5.
PLoS Comput Biol ; 11(3): e1004112, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25775448

RESUMEN

Synchronous spiking during cerebellar tasks has been observed across Purkinje cells: however, little is known about the intrinsic cellular mechanisms responsible for its initiation, cessation and stability. The Phase Response Curve (PRC), a simple input-output characterization of single cells, can provide insights into individual and collective properties of neurons and networks, by quantifying the impact of an infinitesimal depolarizing current pulse on the time of occurrence of subsequent action potentials, while a neuron is firing tonically. Recently, the PRC theory applied to cerebellar Purkinje cells revealed that these behave as phase-independent integrators at low firing rates, and switch to a phase-dependent mode at high rates. Given the implications for computation and information processing in the cerebellum and the possible role of synchrony in the communication with its post-synaptic targets, we further explored the firing rate dependency of the PRC in Purkinje cells. We isolated key factors for the experimental estimation of the PRC and developed a closed-loop approach to reliably compute the PRC across diverse firing rates in the same cell. Our results show unambiguously that the PRC of individual Purkinje cells is firing rate dependent and that it smoothly transitions from phase independent integrator to a phase dependent mode. Using computational models we show that neither channel noise nor a realistic cell morphology are responsible for the rate dependent shift in the phase response curve.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Células de Purkinje/fisiología , Animales , Biología Computacional , Simulación por Computador , Ratas , Ratas Wistar
6.
Nat Commun ; 14(1): 4440, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488100

RESUMEN

Inertia is a measure of a power system's capability to counteract frequency disturbances: in conventional power networks, inertia is approximately constant over time, which contributes to network stability. However, as the share of renewable energy sources increases, the inertia associated to synchronous generators declines, which may pose a threat to the overall stability. Reliably estimating the inertia of power systems dominated by inverted-connected sources has therefore become of paramount importance. We develop a framework for the continuous estimation of the inertia in an electric power system, exploiting state-of-the-art artificial intelligence techniques. We perform an in-depth investigation based on power spectra analysis and input-output correlations to explain how the artificial neural network operates in this specific realm, thus shedding light on the input features necessary for proper neural-network training. We validate our approach on a heterogeneous power network comprising synchronous generators, static compensators and converter-interfaced generation: our results highlight how different devices are characterized by distinct spectral footprints - a feature that must be taken into account by transmission system operators when performing online network stability analyses.

7.
PLoS Comput Biol ; 7(3): e1001102, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21423712

RESUMEN

Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here.


Asunto(s)
Simulación por Computador , Canales Iónicos/fisiología , Neuronas/metabolismo , Activación del Canal Iónico/fisiología , Cadenas de Markov , Potenciales de la Membrana/fisiología , Modelos Neurológicos
8.
Neuron ; 104(5): 972-986.e6, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31761708

RESUMEN

How neural circuits develop in the human brain has remained almost impossible to study at the neuronal level. Here, we investigate human cortical neuron development, plasticity, and function using a mouse/human chimera model in which xenotransplanted human cortical pyramidal neurons integrate as single cells into the mouse cortex. Combined neuronal tracing, electrophysiology, and in vivo structural and functional imaging of the transplanted cells reveal a coordinated developmental roadmap recapitulating key milestones of human cortical neuron development. The human neurons display a prolonged developmental timeline, indicating the neuron-intrinsic retention of juvenile properties as an important component of human brain neoteny. Following maturation, human neurons in the visual cortex display tuned, decorrelated responses to visual stimuli, like mouse neurons, demonstrating their capacity for physiological synaptic integration in host cortical circuits. These findings provide new insights into human neuronal development and open novel avenues for the study of human neuronal function and disease. VIDEO ABSTRACT.


Asunto(s)
Neurogénesis/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Células Piramidales/trasplante , Animales , Diferenciación Celular/fisiología , Xenoinjertos , Humanos , Ratones , Corteza Visual/citología , Corteza Visual/fisiología
9.
Chaos ; 18(3): 033128, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19045466

RESUMEN

This paper provides a global picture of the bifurcation scenario of the Hindmarsh-Rose model. A combination between simulations and numerical continuations is used to unfold the complex bifurcation structure. The bifurcation analysis is carried out by varying two bifurcation parameters and evidence is given that the structure that is found is universal and appears for all combinations of bifurcation parameters. The information about the organizing principles and bifurcation diagrams are then used to compare the dynamics of the model with that of a piecewise-linear approximation, customized for circuit implementation. A good match between the dynamical behaviors of the models is found. These results can be used both to design a circuit implementation of the Hindmarsh-Rose model mimicking the diversity of neural response and as guidelines to predict the behavior of the model as well as its circuit implementation as a function of parameters.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Dinámicas no Lineales , Oscilometría/métodos , Algoritmos , Animales , Simulación por Computador , Humanos , Modelos Lineales , Transmisión Sináptica/fisiología
10.
Nat Neurosci ; 21(7): 985-995, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915194

RESUMEN

To support cognitive function, the CA3 region of the hippocampus performs computations involving attractor dynamics. Understanding how cellular and ensemble activities of CA3 neurons enable computation is critical for elucidating the neural correlates of cognition. Here we show that CA3 comprises not only classically described pyramid cells with thorny excrescences, but also includes previously unidentified 'athorny' pyramid cells that lack mossy-fiber input. Moreover, the two neuron types have distinct morphological and physiological phenotypes and are differentially modulated by acetylcholine. To understand the contribution of these athorny pyramid neurons to circuit function, we measured cell-type-specific firing patterns during sharp-wave synchronization events in vivo and recapitulated these dynamics with an attractor network model comprising two principal cell types. Our data and simulations reveal a key role for athorny cell bursting in the initiation of sharp waves: transient network attractor states that signify the execution of pattern completion computations vital to cognitive function.


Asunto(s)
Hipocampo/fisiología , Células Piramidales/fisiología , Animales , Cognición/fisiología , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Transgénicos , Modelos Neurológicos , Células Piramidales/citología , Ratas , Ratas Wistar
11.
Cell Rep ; 23(9): 2732-2743, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847802

RESUMEN

The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation.


Asunto(s)
Envejecimiento/patología , Neuronas/trasplante , Células Madre Pluripotentes/citología , Corteza Visual/patología , Animales , Axones/metabolismo , Biomarcadores/metabolismo , Corteza Cerebral/citología , Células Madre Embrionarias Humanas/citología , Humanos , Ratones Endogámicos NOD , Ratones SCID , Especificidad de Órganos , Sinapsis/metabolismo , Telencéfalo/metabolismo
12.
J Vis Exp ; (100): e52320, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26132434

RESUMEN

Experimental neuroscience is witnessing an increased interest in the development and application of novel and often complex, closed-loop protocols, where the stimulus applied depends in real-time on the response of the system. Recent applications range from the implementation of virtual reality systems for studying motor responses both in mice and in zebrafish, to control of seizures following cortical stroke using optogenetics. A key advantage of closed-loop techniques resides in the capability of probing higher dimensional properties that are not directly accessible or that depend on multiple variables, such as neuronal excitability and reliability, while at the same time maximizing the experimental throughput. In this contribution and in the context of cellular electrophysiology, we describe how to apply a variety of closed-loop protocols to the study of the response properties of pyramidal cortical neurons, recorded intracellularly with the patch clamp technique in acute brain slices from the somatosensory cortex of juvenile rats. As no commercially available or open source software provides all the features required for efficiently performing the experiments described here, a new software toolbox called LCG was developed, whose modular structure maximizes reuse of computer code and facilitates the implementation of novel experimental paradigms. Stimulation waveforms are specified using a compact meta-description and full experimental protocols are described in text-based configuration files. Additionally, LCG has a command-line interface that is suited for repetition of trials and automation of experimental protocols.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Células Piramidales/fisiología , Animales , Ratas , Ratas Wistar
13.
J Neurosci Methods ; 230: 5-19, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24769169

RESUMEN

BACKGROUND: Current software tools for electrophysiological experiments are limited in flexibility and rarely offer adequate support for advanced techniques such as dynamic clamp and hybrid experiments, which are therefore limited to laboratories with a significant expertise in neuroinformatics. NEW METHOD: We have developed lcg, a software suite based on a command-line interface (CLI) that allows performing both standard and advanced electrophysiological experiments. Stimulation protocols for classical voltage and current clamp experiments are defined by a concise and flexible meta description that allows representing complex waveforms as a piece-wise parametric decomposition of elementary sub-waveforms, abstracting the stimulation hardware. To perform complex experiments lcg provides a set of elementary building blocks that can be interconnected to yield a large variety of experimental paradigms. RESULTS: We present various cellular electrophysiological experiments in which lcg has been employed, ranging from the automated application of current clamp protocols for characterizing basic electrophysiological properties of neurons, to dynamic clamp, response clamp, and hybrid experiments. We finally show how the scripting capabilities behind a CLI are suited for integrating experimental trials into complex workflows, where actual experiment, online data analysis and computational modeling seamlessly integrate. COMPARISON WITH EXISTING METHODS: We compare lcg with two open source toolboxes, RTXI and RELACS. CONCLUSIONS: We believe that lcg will greatly contribute to the standardization and reproducibility of both simple and complex experiments. Additionally, on the long run the increased efficiency due to a CLI will prove a great benefit for the experimental community.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Programas Informáticos , Interfaz Usuario-Computador , Potenciales de Acción , Algoritmos , Animales , Corteza Cerebelosa/fisiología , Simulación por Computador , Estimulación Eléctrica/métodos , Modelos Neurológicos , Técnicas de Placa-Clamp/métodos , Células Piramidales/fisiología , Ratas Wistar , Procesamiento de Señales Asistido por Computador , Corteza Somatosensorial/fisiología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
14.
Neuron ; 77(3): 440-56, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23395372

RESUMEN

The study of human cortical development has major implications for brain evolution and diseases but has remained elusive due to paucity of experimental models. Here we found that human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), cultured without added morphogens, recapitulate corticogenesis leading to the sequential generation of functional pyramidal neurons of all six layer identities. After transplantation into mouse neonatal brain, human ESC-derived cortical neurons integrated robustly and established specific axonal projections and dendritic patterns corresponding to native cortical neurons. The differentiation and connectivity of the transplanted human cortical neurons complexified progressively over several months in vivo, culminating in the establishment of functional synapses with the host circuitry. Our data demonstrate that human cortical neurons generated in vitro from ESC/iPSC can develop complex hodological properties characteristic of the cerebral cortex in vivo, thereby offering unprecedented opportunities for the modeling of human cortex diseases and brain repair.


Asunto(s)
Encéfalo/citología , Células Madre Embrionarias/citología , Red Nerviosa/fisiología , Células Madre Pluripotentes/fisiología , Células Piramidales/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Factores de Edad , Animales , Axones/fisiología , Bromodesoxiuridina , Calcio/metabolismo , Diferenciación Celular , Trasplante de Células , Células Cultivadas , Dendritas/fisiología , Potenciales Evocados/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Feto , Colorantes Fluorescentes/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Humanos , Técnicas In Vitro , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Red Nerviosa/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Embarazo , Células Piramidales/citología , ARN Mensajero/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Potenciales Sinápticos/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Tirosina 3-Monooxigenasa/metabolismo , Valina/análogos & derivados , Valina/farmacología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-22016731

RESUMEN

Understanding the computational capabilities of the nervous system means to "identify" its emergent multiscale dynamics. For this purpose, we propose a novel model-driven identification procedure and apply it to sparsely connected populations of excitatory integrate-and-fire neurons with spike frequency adaptation (SFA). Our method does not characterize the system from its microscopic elements in a bottom-up fashion, and does not resort to any linearization. We investigate networks as a whole, inferring their properties from the response dynamics of the instantaneous discharge rate to brief and aspecific supra-threshold stimulations. While several available methods assume generic expressions for the system as a black box, we adopt a mean-field theory for the evolution of the network transparently parameterized by identified elements (such as dynamic timescales), which are in turn non-trivially related to single-neuron properties. In particular, from the elicited transient responses, the input-output gain function of the neurons in the network is extracted and direct links to the microscopic level are made available: indeed, we show how to extract the decay time constant of the SFA, the absolute refractory period and the average synaptic efficacy. In addition and contrary to previous attempts, our method captures the system dynamics across bifurcations separating qualitatively different dynamical regimes. The robustness and the generality of the methodology is tested on controlled simulations, reporting a good agreement between theoretically expected and identified values. The assumptions behind the underlying theoretical framework make the method readily applicable to biological preparations like cultured neuron networks and in vitro brain slices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA