Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Diabetologia ; 63(5): 1017-1031, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32043185

RESUMEN

AIMS/HYPOTHESIS: Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. METHODS: In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n = 34), (2) seroconverted to ≥1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n = 27) or (3) remained autoantibody negative during follow-up (CTRL, n = 10). RESULTS: During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. CONCLUSIONS/INTERPRETATION: Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. DATA AVAILABILITY: The GEMs for PBMCs have been submitted to BioModels (www.ebi.ac.uk/biomodels/), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/), under accession number MTBLS1015.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Autoinmunidad/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Progresión de la Enfermedad , Femenino , Genotipo , Humanos , Islotes Pancreáticos/metabolismo , Leucocitos Mononucleares/metabolismo , Metabolismo de los Lípidos/fisiología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Esfingolípidos/metabolismo , Adulto Joven
2.
Anal Bioanal Chem ; 412(10): 2251-2259, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31760452

RESUMEN

There is evidence of a positive association between per- and polyfluoroalkyl substances (PFASs) and cholesterol levels in human plasma, which may be due to common reabsorption of PFASs and bile acids (BAs) in the gut. Here we report development and validation of a method that allows simultaneous, quantitative determination of PFASs and BAs in plasma, using 150 µL or 20 µL of sample. The method involves protein precipitation using 96-well plates. The instrumental analysis was performed with ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS), using reverse-phase chromatography, with the ion source operated in negative electrospray mode. The mass spectrometry analysis was carried out using multiple reaction monitoring mode. The method proved to be sensitive, robust, and with sufficient linear range to allow reliable determination of both PFASs and BAs. The method detection limits were between 0.01 and 0.06 ng mL-1 for PFASs and between 0.002 and 0.152 ng mL-1 for BAs, with the exception of glycochenodeoxycholic acid (0.56 ng mL-1). The PFAS measured showed excellent agreement with certified plasma PFAS concentrations in NIST SRM 1957 reference serum. The method was tested on serum samples from 20 healthy individuals. In this proof-of-concept study, we identified significant associations between plasma PFAS and BA levels, which suggests that PFAS may alter the synthesis and/or uptake of BAs. Graphical Abstract.


Asunto(s)
Ácidos y Sales Biliares/química , Cromatografía Líquida de Alta Presión/métodos , Fluorocarburos/química , Espectrometría de Masas en Tándem/métodos , Fluorocarburos/sangre , Humanos , Límite de Detección , Plasma/química , Suero/química
3.
Cell Rep ; 37(6): 109973, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758307

RESUMEN

T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Ceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Metaboloma , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Linfocitos T CD4-Positivos/metabolismo , Genoma Humano , Humanos , Activación de Linfocitos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
4.
NPJ Schizophr ; 6(1): 21, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848142

RESUMEN

There is an established, link between psychosis and metabolic abnormalities, such as altered glucose metabolism and dyslipidemia, which often precede the initiation of antipsychotic treatment. It is known that obesity-associated metabolic disorders are promoted by activation of specific cannabinoid targets (endocannabinoid system (ECS)). Our recent data suggest that there is a change in the circulating lipidome at the onset of first episode psychosis (FEP). With the aim of characterizing the involvement of the central and peripheral ECSs, and their mutual associations; here, we performed a combined neuroimaging and metabolomic study in patients with FEP and healthy controls (HC). Regional brain cannabinoid receptor type 1 (CB1R) availability was quantified in two, independent samples of patients with FEP (n = 20 and n = 8) and HC (n = 20 and n = 10), by applying three-dimensional positron emission tomography, using two radiotracers, [11C]MePPEP and [18F]FMPEP-d2. Ten endogenous cannabinoids or related metabolites were quantified in serum, drawn from these individuals during the same imaging session. Circulating levels of arachidonic acid and oleoylethanolamide (OEA) were reduced in FEP individuals, but not in those who were predominantly medication free. In HC, there was an inverse association between levels of circulating arachidonoyl glycerol, anandamide, OEA, and palmitoyl ethanolamide, and CB1R availability in the posterior cingulate cortex. This phenomenon was, however, not observed in FEP patients. Our data thus provide evidence of cross talk, and dysregulation between peripheral endocannabinoids and central CB1R availability in FEP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA