Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(5): E601-10, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449872

RESUMEN

Resistance to antiestrogens is one of the major challenges in breast cancer treatment. Although phosphorylation of estrogen receptor α (ERα) is an important factor in endocrine resistance, the contributions of specific kinases in endocrine resistance are still not fully understood. Here, we report that an important innate immune response kinase, the IκB kinase-related TANK-binding kinase 1 (TBK1), is a crucial determinant of resistance to tamoxifen therapies. We show that TBK1 increases ERα transcriptional activity through phosphorylation modification of ERα at the Ser-305 site. Ectopic TBK1 expression impairs the responsiveness of breast cancer cells to tamoxifen. By studying the specimens from patients with breast cancer, we find a strong positive correlation of TBK1 with ERα, ERα Ser-305, and cyclin D1. Notably, patients with tumors highly expressing TBK1 respond poorly to tamoxifen treatment and show high potential for relapse. Therefore, our findings suggest that TBK1 contributes to tamoxifen resistance in breast cancer via phosphorylation modification of ERα.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Tamoxifeno/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ciclina D1/metabolismo , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Estimación de Kaplan-Meier , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Tamoxifeno/uso terapéutico , Transcripción Genética/efectos de los fármacos , Resultado del Tratamiento
2.
BMC Cell Biol ; 16: 6, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25886724

RESUMEN

BACKGROUND: Mps1, an essential component of the mitotic checkpoint, is also an important interphase regulator and has roles in DNA damage response, cytokinesis and centrosome duplication. Mps1 predominantly resides in the cytoplasm and relocates into the nucleus at the late G2 phase. So far, the mechanism underlying the Mps1 translocation between the cytoplasm and nucleus has been unclear. RESULTS: In this work, a dynamic export process of Mps1 from the nucleus to cytoplasm in interphase was revealed- a process blocked by the Crm1 inhibitor, Leptomycin B, suggesting that export of Mps1 is Crm1 dependent. Consistent with this speculation, a direct association between Mps1 and Crm1 was found. Furthermore, a putative nuclear export sequence (pNES) motif at the N-terminal of Mps1 was identified by analyzing the motif of Mps1. This motif shows a high sequence similarity to the classic NES, a fusion of this motif with EGFP results in dramatic exclusion of the fusion protein from the nucleus. Additionally, Mps1 mutant loss of pNES integrity was shown by replacing leucine with alanine which produced a diffused subcellular distribution, compared to the wild type protein which resides predominantly in cytoplasm. CONCLUSION: Taken these findings together, it was concluded that the pNES sequence is sufficient for the Mps1 export from nucleus during interphase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ácidos Grasos Insaturados/farmacología , Células HEK293 , Humanos , Interfase , Carioferinas/antagonistas & inhibidores , Carioferinas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
3.
J Virol ; 88(19): 11356-68, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25056901

RESUMEN

UNLABELLED: Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE: RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and propose a novel mechanism for the evasion of the innate immune response controlled by EV71.


Asunto(s)
ARN Helicasas DEAD-box/genética , Enterovirus Humano A/genética , Evasión Inmune , Inmunidad Innata , MicroARNs/genética , Proteínas Virales/genética , Proteasas Virales 3C , Animales , Chlorocebus aethiops , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/inmunología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Enzima Desubiquitinante CYLD , Perros , Enterovirus Humano A/inmunología , Regulación de la Expresión Génica , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macrófagos/inmunología , Macrófagos/virología , Células de Riñón Canino Madin Darby , MicroARNs/inmunología , Poliubiquitina/genética , Poliubiquitina/inmunología , Receptores Inmunológicos , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/inmunología , Células Vero , Proteínas Virales/inmunología , Replicación Viral
4.
Biochem Biophys Res Commun ; 450(4): 1690-5, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25063032

RESUMEN

The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint.


Asunto(s)
Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Neoplasias del Colon/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias del Colon/patología , Regulación hacia Abajo , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética
5.
Cell Cycle ; 12(8): 1292-302, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23531678

RESUMEN

The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metafase/fisiología , Mitosis/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Rayos Ultravioleta , Western Blotting , Línea Celular Tumoral , Técnica del Anticuerpo Fluorescente , Humanos , Metafase/efectos de la radiación , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de la radiación , Imagen de Lapso de Tiempo
6.
Cell Cycle ; 10(16): 2742-50, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21778823

RESUMEN

Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Péptidos y Proteínas de Señalización Intracelular/genética , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Huso Acromático , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos/genética , Línea Celular Tumoral , Segregación Cromosómica/efectos de los fármacos , Fase G2 , Humanos , Cinetocoros , Fosforilación , Quinolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Huso Acromático/metabolismo , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA