Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Oncol ; 3: 236, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062988

RESUMEN

PURPOSE: Glioblastoma multiforme (GBM) is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo, and radiotherapy. Autotaxin (ATX) is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM. METHODS AND MATERIALS: Mouse GL261 and Human U87-MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin fold model in GL261. Heterotopic mouse GL261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer. RESULTS: Pre-treatment of GL261 and U87-MG cells with 1 µM PF-8380 followed by 4 Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL261; P = 0.002 and 17.9% in U87-MG; P = 0.012), decreased invasion (35.6% in GL261; P = 0.0037 and 31.8% in U87-MG; P = 0.002), and attenuated radiation-induced Akt phosphorylation. In the tumor window model, inhibition of ATX abrogated radiation induced tumor neovascularization (65%; P = 0.011). In a heterotopic mouse GL261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm(3), however combination of PF-8380 (10 mg/kg) with irradiation (five fractions of 2 Gy) took more than 32 days to reach a tumor volume of 7000 mm(3). CONCLUSION: Inhibition of ATX by PF-8380 led to decreased invasion and enhanced radiosensitization of GBM cells. Radiation-induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate GBM response to radiotherapy.

2.
Anticancer Res ; 32(7): 2487-99, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22753705

RESUMEN

In cancer treatment, radiation therapy is second only to surgery in terms of its curative potential. However, radiation-induced tumor cell death is limited by a number of factors, including the adverse response of the tumor microenvironment to radiation treatment and tumor-acquired mechanisms of evasive resistance. Recent attempts to enhance the therapeutic efficiency of ionizing radiation have produced promising results. In this review article, we discuss the development of novel therapeutic strategies for tumor sensitization to radiation therapy. These innovative approaches incorporate the involvement of the immune response and the role of cancer stem cells, as well as direct targeting of signal transduction pathways. Taken together, these concerted efforts demonstrate that the augmentation of radiotherapeutic efficacy results in significantly improved control not only of local disease, but also of metastatic spread and improved overall patient survival.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación
3.
Anticancer Res ; 32(1): 1-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22213282

RESUMEN

Current attempts to disrupt the complex process of tumor blood vessel formation are predominantly focused on targeting the vascular endothelial growth factor (VEGF)-VEGFR signaling pathway. Although clinically proven to inhibit VEGF and its receptors, these pharmacologic agents are selective, but not specific. Consequently, many of the approved inhibitors also impair other molecular targets leading to increased toxicity. Current efforts to unravel the complexity of tumor angiogenesis have identified several new candidates for antivascular therapy. In this review article, we identify well-established and novel angiogenic molecules and discuss benefits of the therapeutic approaches based on targeting of such factors.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/prevención & control , Transducción de Señal/efectos de los fármacos , Humanos
4.
Anticancer Agents Med Chem ; 11(8): 712-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21707499

RESUMEN

Blood vessel formation is a fundamental process that occurs during both normal and pathologic periods of tissue growth. In aggressive malignancies such as glioblastoma multiforme (GBM), vascularization is often excessive and facilitates tumor progression. In an attempt to maintain tumors in a state of quiescence, multiple anti-angiogenic agents have been developed. Although several angiogenesis inhibitors have produced enhanced clinical benefits in GBM, many of these pharmacologic agents result in transitory initial response phases followed by evasive tumor resistance. Thus, a significant need exists for the discovery of novel and effective anti-angiogenic therapies. The development of new molecular-targeted therapeutic strategies is often complicated by the complexity of angiogenic signal transduction. Due to the labyrinthine nature of these signaling pathways, increased production of other angiogenic factors may compensate for the inhibition of key vascular targets like vascular endothelial growth factor (VEGF). Such compensatory mechanisms facilitate vascularization and allow tumor growth to proceed even in the presence of anti-angiogenic agents. This review presents the challenges of targeting the intricate vascular network of GBM and discusses the clinical implications for recent advancements in targeted anti-angiogenic drug therapy.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/patología , Glioblastoma/fisiopatología , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neovascularización Patológica/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Cancer Lett ; 304(2): 137-43, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21397389

RESUMEN

In ovarian cancer, the molecular targeted chemotherapeutics could increase the efficiency of low-dose radiotherapy while decreasing injury to adjusted organs. In irradiated A2780 human ovarian carcinoma cells, cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF(3) prevented activation of pro-survival Akt signaling and enhanced cell death. The potential molecular mechanisms of this effect could involve signaling through lysophosphatidic acid receptors. In the heterotopic A2780 tumor model using nude mice, cPLA(2) inhibition significantly delayed tumor growth compared to treatment with radiation or vehicle alone. These results identify cPLA(2) as a molecular target to enhance the therapeutic ratio of radiation in ovarian cancer.


Asunto(s)
Adenocarcinoma/enzimología , Ácidos Araquidónicos/farmacología , Neoplasias Ováricas/enzimología , Fosfolipasas A2 Citosólicas/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/radioterapia , Animales , Antineoplásicos/farmacología , Western Blotting , Terapia Combinada , Citoplasma/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/efectos de la radiación , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/radioterapia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
PLoS One ; 6(7): e22182, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21799791

RESUMEN

Despite wide margins and high dose irradiation, unresectable malignant glioma (MG) is less responsive to radiation and is uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA(2)) is a molecular target for radiosensitizing cancer through the vascular endothelium. Autotaxin (ATX) and lysophosphatidic acid (LPA) receptors are downstream from cPLA(2) and highly expressed in MG. Using the ATX and LPA receptor inhibitor, α-bromomethylene phosphonate LPA (BrP-LPA), we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG. Treatment of Human Umbilical Endothelial cells (HUVEC) and mouse brain microvascular cells bEND.3 with 5 µmol/L BrP-LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC, we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However, knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261, mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of radiosensitizers for MG.


Asunto(s)
Glioma/irrigación sanguínea , Glioma/metabolismo , Terapia Molecular Dirigida , Neovascularización Patológica/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de la radiación , Glioma/patología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Humanos , Lisofosfolípidos/farmacología , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Neovascularización Patológica/radioterapia , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
7.
J Natl Cancer Inst ; 102(18): 1398-412, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20729478

RESUMEN

BACKGROUND: Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA(2)) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA(2) as a novel molecular target for antiangiogenesis therapy. METHODS: Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA(2) expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA(2)α(+/+)) or deficient in (cPLA(2)α(-/-)) cPLA(2)α, the predominant isoform in endothelium (n = 6-7 mice per group). The effect of inhibiting cPLA(2) activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA(2) inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA(2)α(+/+) and cPLA(2)α(-/-) mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA(2)α(-/-) MPMEC. All statistical tests were two-sided. RESULTS: GL261 tumor progression proceeded normally in cPLA(2)α(+/+) mice, whereas no GL261 tumors formed in cPLA(2)α(-/-) mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA(2)α(-/-) mice. Immunohistochemical examination of the remaining tumors from cPLA(2)α(-/-) mice revealed attenuated vascularity (P ≤ .001) compared with tumors from cPLA(2)α(+/+) mice. Inhibition of cPLA(2) activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average number of days to reach tumor volume of 700 mm(3), CDIBA vs vehicle: 16.8 vs 11.8, difference = 5, 95% confidence interval = 3.6 to 6.4, P = .04) and a decrease in tumor size (eg, GL261 model: mean volume on day 21, CDIBA vs vehicle: 40.1 vs 247.4 mm(3), difference = 207.3 mm(3), 95% confidence interval = 20.9 to 293.7 mm(3), P = .021). cPLA(2) deficiency statistically significantly reduced MPMEC proliferation and invasive migration (P = .002 and P = .004, respectively). Compared with untreated cells, cPLA(2)α(-/-) MPMEC treated with lysophosphatidylcholine and lysophosphatidic acid displayed increased cell proliferation (P = .011) and invasive migration (P < .001). CONCLUSIONS: In these mouse models of brain and lung cancer, cPLA(2) and lysophospholipids have key regulatory roles in tumor angiogenesis. cPLA(2) inhibition may be a novel effective antiangiogenic therapy.


Asunto(s)
Células Endoteliales/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Lisofosfolípidos/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Animales , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Movimiento Celular , Proliferación Celular , Colágeno , Modelos Animales de Enfermedad , Combinación de Medicamentos , Glioblastoma/irrigación sanguínea , Fosfolipasas A2 Grupo IV/deficiencia , Laminina , Ratones , Necrosis , Invasividad Neoplásica , Neovascularización Patológica/enzimología , Pericitos/metabolismo , Proteoglicanos , Circulación Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA