Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816617

RESUMEN

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Asunto(s)
Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Megacariocitos , Plaquetas/inmunología , Plaquetas/metabolismo , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Diferenciación Celular/inmunología , Megacariocitos/citología , Linaje de la Célula , Ratones Endogámicos C57BL , Hematopoyesis , Trombopoyesis , Ratones Noqueados , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/inmunología
2.
Cell ; 174(4): 999-1014.e22, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096314

RESUMEN

The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Sistema Nervioso/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Nervioso/crecimiento & desarrollo
3.
Cell ; 165(4): 1012-26, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27062923

RESUMEN

Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research.


Asunto(s)
Blastocisto/metabolismo , Cromosomas Humanos X , Análisis de la Célula Individual , Masa Celular Interna del Blastocisto/metabolismo , Compensación de Dosificación (Genética) , Femenino , Humanos , Masculino , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN , Caracteres Sexuales , Transcriptoma
4.
Cell ; 167(2): 566-580.e19, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716510

RESUMEN

Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.


Asunto(s)
Neuronas Dopaminérgicas/citología , Mesencéfalo/citología , Mesencéfalo/embriología , Células-Madre Neurales/citología , Neurogénesis , Células Madre Pluripotentes/citología , Animales , Línea Celular , Técnicas de Reprogramación Celular , Humanos , Aprendizaje Automático , Mesencéfalo/metabolismo , Ratones , Neuroglía/citología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
5.
Nature ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693260

RESUMEN

The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.

6.
Nat Immunol ; 17(7): 797-805, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27135602

RESUMEN

Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required.


Asunto(s)
Sistema Nervioso Central/inmunología , Células Madre Hematopoyéticas/fisiología , Macrófagos/fisiología , Microglía/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Monocitos/inmunología , Parabiosis , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética
7.
Nature ; 596(7870): 92-96, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34321664

RESUMEN

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Análisis de la Célula Individual , Transcriptoma , Animales , Animales Recién Nacidos/genética , Encéfalo/anatomía & histología , Femenino , Gastrulación/genética , Masculino , Ratones , Tubo Neural/anatomía & histología , Tubo Neural/citología , Tubo Neural/embriología
8.
Nature ; 597(7875): 196-205, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497388

RESUMEN

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Asunto(s)
Movimiento Celular , Rastreo Celular , Células/citología , Biología Evolutiva/métodos , Embrión de Mamíferos/citología , Feto/citología , Difusión de la Información , Organogénesis , Adulto , Animales , Atlas como Asunto , Técnicas de Cultivo de Célula , Supervivencia Celular , Visualización de Datos , Femenino , Humanos , Imagenología Tridimensional , Masculino , Modelos Animales , Organogénesis/genética , Organoides/citología , Células Madre/citología
10.
Nature ; 587(7834): 377-386, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32894860

RESUMEN

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Atención a la Salud/métodos , Atención a la Salud/tendencias , Medicina/métodos , Medicina/tendencias , Patología , Análisis de la Célula Individual , Inteligencia Artificial , Atención a la Salud/ética , Atención a la Salud/normas , Diagnóstico Precoz , Educación Médica , Europa (Continente) , Femenino , Salud , Humanos , Legislación Médica , Masculino , Medicina/normas
11.
Development ; 149(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35593486

RESUMEN

Understanding human brain development is of fundamental interest but is also very challenging. Single-cell RNA-sequencing studies in mammals have revealed that brain development is a highly dynamic process with tremendous, previously concealed, cellular heterogeneity. This Spotlight discusses key insights from these studies and their implications for experimental models. We survey published single-cell RNA-sequencing studies of mouse and human brain development, organized by anatomical regions and developmental time points. We highlight remaining gaps in the field, predominantly concerning human brain development. We propose future directions to fill the remaining gaps, and necessary complementary techniques to create an atlas integrated in space and time of human brain development.


Asunto(s)
Encéfalo , Análisis de la Célula Individual , Animales , Mamíferos/genética , ARN , Análisis de la Célula Individual/métodos
12.
Nature ; 560(7719): 494-498, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089906

RESUMEN

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Asunto(s)
Encéfalo/citología , Cresta Neural/metabolismo , Neuronas/citología , Empalme del ARN/genética , ARN/análisis , ARN/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Linaje de la Célula/genética , Células Cromafines/citología , Células Cromafines/metabolismo , Conjuntos de Datos como Asunto , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Cinética , Masculino , Ratones , Cresta Neural/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Factores de Tiempo , Transcripción Genética/genética
14.
Nat Methods ; 15(11): 932-935, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30377364

RESUMEN

Global efforts to create a molecular census of the brain using single-cell transcriptomics are producing a large catalog of molecularly defined cell types. However, spatial information is lacking and new methods are needed to map a large number of cell type-specific markers simultaneously on large tissue areas. Here, we describe a cyclic single-molecule fluorescence in situ hybridization methodology and define the cellular organization of the somatosensory cortex.


Asunto(s)
Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Hibridación Fluorescente in Situ/métodos , ARN/análisis , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Corteza Somatosensorial/fisiología , Animales , Femenino , Colorantes Fluorescentes/química , Masculino , Corteza Somatosensorial/citología
15.
PLoS Biol ; 16(6): e2006387, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912866

RESUMEN

Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.


Asunto(s)
Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Neuronas GABAérgicas/clasificación , Neuronas GABAérgicas/metabolismo , Potenciales de Acción , Algoritmos , Animales , Quimiocinas CXC/genética , Dendritas/metabolismo , Neuronas GABAérgicas/citología , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Células Piramidales/citología , Células Piramidales/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transmisión Sináptica , Transcriptoma , Péptido Intestinal Vasoactivo/genética
16.
EMBO J ; 35(18): 1963-78, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27354364

RESUMEN

Pre-B-cell leukemia homeobox (PBX) transcription factors are known to regulate organogenesis, but their molecular targets and function in midbrain dopaminergic neurons (mDAn) as well as their role in neurodegenerative diseases are unknown. Here, we show that PBX1 controls a novel transcriptional network required for mDAn specification and survival, which is sufficient to generate mDAn from human stem cells. Mechanistically, PBX1 plays a dual role in transcription by directly repressing or activating genes, such as Onecut2 to inhibit lateral fates during embryogenesis, Pitx3 to promote mDAn development, and Nfe2l1 to protect from oxidative stress. Notably, PBX1 and NFE2L1 levels are severely reduced in dopaminergic neurons of the substantia nigra of Parkinson's disease (PD) patients and decreased NFE2L1 levels increases damage by oxidative stress in human midbrain cells. Thus, our results reveal novel roles for PBX1 and its transcriptional network in mDAn development and PD, opening the door for new therapeutic interventions.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/fisiología , Redes Reguladoras de Genes , Enfermedad de Parkinson/patología , Proteínas Proto-Oncogénicas/metabolismo , Sustancia Negra/patología , Humanos , Factor de Transcripción 1 de la Leucemia de Células Pre-B
17.
Mol Psychiatry ; 24(2): 182-197, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29520040

RESUMEN

Variance in IQ is associated with a wide range of health outcomes, and 1% of the population are affected by intellectual disability. Despite a century of research, the fundamental neural underpinnings of intelligence remain unclear. We integrate results from genome-wide association studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify tissues and cell types associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed with a study comparing 1247 individuals with mean IQ ~170 to 8185 controls. Genes associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses find the most significant enrichment for frontal cortex brain expressed genes. These results suggest specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses for neuroscience experiments using model systems.


Asunto(s)
Inteligencia/genética , Inteligencia/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Estudios de Cohortes , Análisis de Datos , Femenino , Lóbulo Frontal/metabolismo , Expresión Génica/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Células Piramidales/fisiología , Lóbulo Temporal/metabolismo
18.
EMBO J ; 34(1): 36-54, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25430741

RESUMEN

A hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrates bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin's Ca(2+) sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Pharmacological tools combined with RNA interference demonstrate that secretagogin's loss of function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral corticosterone levels in response to acute stress. Cumulatively, these data define a novel secretagogin neuronal locus and molecular axis underpinning stress responsiveness.


Asunto(s)
Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Secretagoginas/metabolismo , Estrés Fisiológico/fisiología , Animales , Corticosterona/genética , Hormona Liberadora de Corticotropina/genética , Masculino , Ratones , Neuronas/citología , Núcleo Hipotalámico Paraventricular/citología , Hipófisis/citología , Hipófisis/metabolismo , Interferencia de ARN , Secretagoginas/genética , Transcriptoma/fisiología
19.
Development ; 143(19): 3459-3469, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578796

RESUMEN

Leucine twenty homeobox (LEUTX) is a paired (PRD)-like homeobox gene that is expressed almost exclusively in human embryos during preimplantation development. We previously identified a novel transcription start site for the predicted human LEUTX gene based on the transcriptional analysis of human preimplantation embryos. The novel variant encodes a protein with a complete homeodomain. Here, we provide a detailed description of the molecular cloning of the complete homeodomain-containing LEUTX Using a human embryonic stem cell overexpression model we show that the complete homeodomain isoform is functional and sufficient to activate the transcription of a large proportion of the genes that are upregulated in human embryo genome activation (EGA), whereas the previously predicted partial homeodomain isoform is largely inactive. Another PRD-like transcription factor, DPRX, is then upregulated as a powerful repressor of transcription. We propose a two-stage model of human EGA in which LEUTX acts as a transcriptional activator at the 4-cell stage, and DPRX as a balancing repressor at the 8-cell stage. We conclude that LEUTX is a candidate regulator of human EGA.


Asunto(s)
Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente Indirecta , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ratones , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/genética
20.
Nat Rev Genet ; 14(9): 618-30, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897237

RESUMEN

The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de la Célula Individual , Animales , Separación Celular/métodos , Epigenómica , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteómica , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA