Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Environ Monit Assess ; 196(5): 423, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570374

RESUMEN

Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.


Asunto(s)
Eucalyptus , Herbicidas , Oryza , Quinolinas , Sasa , Contaminantes del Suelo , Triazinas , Carbón Orgánico , Suelo , Adsorción , Monitoreo del Ambiente , Herbicidas/análisis , Contaminantes del Suelo/análisis
2.
Environ Monit Assess ; 193(4): 194, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33728504

RESUMEN

The speed of the sorption reaction alters the bioavailability of herbicides in the soil and, consequently, the transport and transformation processes of the molecule in the environment. In this research, the sorption kinetics of sulfometuron-methyl was evaluated in different Brazilian soils in which sugarcane is grown. The sorption speed was carried out by the batch equilibrium method. The amount of sulfometuron-methyl adsorbed and remaining in the soil solution was used to build kinetic models in fifteen soils. Pearson's correlation coefficients were determined between maximum sorption capacity and soil properties. The pseudo-second-order model presented the best fit to report the sorption kinetics of sulfometuron-methyl in soils. The sorption equilibrium time varied between 69.1 and 524.7 min. The properties of cation exchange capacity (CEC), soil hydrogenionic potential (pH), and total organic carbon (TOC) affected the sorption kinetics of sulfometuron-methyl. The pH showed a negative correlation with the maximum adsorption capacity at equilibrium, while TOC and CEC positively correlated with the maximum adsorption. The results demonstrate that the sorption speed of sulfometuron-methyl varies between soils; this must be considered when defining the rate of use of the herbicide for weed control, minimizing the risk of environmental contamination.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Adsorción , Brasil , Monitoreo del Ambiente , Cinética , Suelo , Contaminantes del Suelo/análisis , Compuestos de Sulfonilurea
3.
Chemosphere ; 360: 142411, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789050

RESUMEN

Atrazine is an herbicide with a high soil leaching capacity, contaminating subsurface water sources. Once the water table is contaminated, riparian species can be exposed to atrazine. In this way, understanding the impacts of this exposure must be evaluated for planning strategies that minimize the effects of this herbicide on native forest species. We aimed to evaluate forest species' sensitivity and antioxidant response to exposure to subsurface waters contaminated with atrazine, as well the dissipation this herbicide. The experiment was conducted in a greenhouse in a completely randomized design, with three replications and one plant per experimental unit. The treatments were arranged in a 2 × 10 factorial. The first factor corresponded to the presence or absence (control) of the atrazine in the subsurface water. The second factor comprised 10 forest species: Amburana cearensis, Anadenanthera macrocarpa, Bauhinia cheilantha, Enterolobium contortisiliquum, Hymenaea courbaril, Libidibia ferrea, Mimosa caesalpiniifolia, Mimosa tenuiflora, Myracrodruon urundeuva, and Tabebuia aurea. The forest species studied showed different sensitivity levels to atrazine in subsurface water. A. cearensis and B. cheilantha species do not have efficient antioxidant systems to prevent severe oxidative damage. The species A. macrocarpa, E. contortisiliquum, L. ferrea, and M. caesalpiniifolia are moderately affected by atrazine. H. courbaril, M. urundeuva, and T. aurea showed greater tolerance to atrazine due to the action of the antioxidant system of these species, avoiding membrane degradation events linked to the production of reactive oxygen species (ROS). Among the forest species, H. courbaril has the most significant remedial potential due to its greater tolerance and reduced atrazine concentrations in the soil.


Asunto(s)
Antioxidantes , Atrazina , Bosques , Herbicidas , Plantones , Contaminantes Químicos del Agua , Atrazina/análisis , Herbicidas/análisis , Antioxidantes/metabolismo , Antioxidantes/análisis , Contaminantes Químicos del Agua/análisis , Plantones/efectos de los fármacos , Contaminantes del Suelo/análisis , Suelo/química
4.
ACS Omega ; 9(32): 34893-34904, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157107

RESUMEN

Chemical desiccation in the preharvest of grains and seeds is commonly used in production fields. Using herbicides for this purpose is a viable alternative to reduce beans' exposure to adverse crop conditions. Our objectives were to evaluate (1) the efficacy of herbicides for accelerated defoliation of cowpea, (2) the impact of herbicide application on antioxidant enzyme activity and protein and amino acid contents in seeds, and (3) the effects of different herbicide application schedules on the physiological aspects of seeds. In the first experiment, in addition to the control treatment (without herbicides), seven herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. Diquat and its mixtures showed greater efficacy in anticipating the harvest. Flumioxazin and diquat alone reduced amino acid content by 61.72 and 51.44%, respectively. The same trend was observed for total soluble proteins. The activity of antioxidant enzymes (CAT, POD, PPO) increased, indicating oxidative stress caused by diquat and flumioxazin. In the second experiment, we tested three application times (6 a.m., 12 p.m., 6 p.m.) with diquat, diquat + flumioxazin, and diquat + carfentrazone. The lowest damage to chlorophyll a was at 6 a.m.; other times reduced photosynthetic pigments and increased carotenoid content. Total soluble sugars decreased by 27.74% with nocturnal application of diquat + flumioxazin. Our data indicate that herbicide use for desiccation affects seed quality. These findings highlight the need for selecting appropriate herbicides and application times. Future research should explore long-term impacts on crop yield and quality.

5.
Toxics ; 12(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38535932

RESUMEN

The leaching of herbicides into the soil is essential to control germinating seeds and parts of vegetative weeds. However, herbicide transportation to deeper soil layers can result in groundwater contamination and, consequently, environmental issues. In this research, our objective was to investigate differences in herbicide leaching between commercial formulations and analytical standards using three different soils. Leaching experiments were carried out for diuron, hexazinone, and sulfometuron-methyl herbicides isolated and in binary and ternary mixtures. The herbicide residue quantification was performed by ultra-high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS). Diuron had less mobility in soils and was retained in the most superficial layers. Hexazinone and sulfometuron-methyl were more mobile and leached into deeper layers. The leaching process was more intense for hexazinone and sulfometuron-methyl. The additives present in the commercial formulation favored the leaching in soils of diuron, hexazinone, and sulfometuron-methyl herbicides isolated and mixture compared to the analytical standard. This fact highlights the importance of considering these effects for the positioning of herbicides in the field to increase the efficiency of weed control and minimize the potential for environmental contamination.

6.
J Xenobiot ; 14(3): 1312-1331, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39311153

RESUMEN

Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different herbicide application times on seed quality and plant physiological responses. The objective of this study was to evaluate the effects of different herbicide application times on cowpea, focusing on seed quality, physiological responses, and biochemical composition, including chlorophylls, carotenoids, sugars, and proline, under nocturnal desiccation. In the first experiment, eight herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. All of the tested herbicides caused a reduction in normal seedling formation, with the diquat + carfentrazone combination resulting in 100% abnormal seedlings. A significant decrease in chlorophyll levels (chlorophyll a: 63.5%, chlorophyll b: 50.2%) was observed using diquat, which indicates damage to photosynthetic processes, while the carotenoid content increased. Total soluble sugars and proline were also negatively impacted, reflecting physiological stress and metabolic changes in seedlings. In the second experiment, three application times were tested with diquat, diquat + flumioxazin, and diquat + carfentrazone. Nocturnal application showed the most significant reduction in chlorophyll levels and increased carotenoid levels. Application at noon and late afternoon also significantly changed the soluble sugar and proline levels. These results indicate that the herbicide application time directly influences the seeds' physiological quality.

7.
Environ Sci Pollut Res Int ; 29(10): 15127-15143, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34628609

RESUMEN

Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed. The sorption and desorption study has been carried out by the batch equilibrium method. The dissipation of the herbicides has been evaluated for 180 days to determine the half-life (t1/2). The leaching tests have been carried out on soil columns. The herbicides isolated and in mixtures have been quantified using ultra-high performance liquid chromatography coupled to the mass spectrometer. Diuron, hexazinone, and sulfometuron-methyl in binary and ternary mixtures have less sorption capacity and greater desorption when compared to these isolated herbicides. Dissipation of diuron alone is slower, with a half-life (t1/2) = 101 days compared to mixtures (t1/2 between 44 and 66 days). For hexazinone and sulfometuron-methyl, the dissipation rate is lower in mixtures (t1/2 over 26 and 16 days), with a more pronounced effect in mixtures with the presence of diuron (t1/2 = 47 and 56 and 17 and 22 days). The binary and ternary mixtures of diuron, hexazinone, and sulfometuron-methyl promoted more significant transport in depth (with the three herbicides quantified to depth P4, P7, and P7, respectively) compared to the application of these isolated herbicides (quantified to depth P2, P4, and P5). Considering the herbicides' desorption and solubility, the new index proposed to estimate the leaching potential allowed a more rigorous assessment concerning the risk of leaching these pesticides, with hexazinone and sulfometuron-methyl presenting a higher risk of contamination of groundwater.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Adsorción , Diurona , Herbicidas/análisis , Suelo , Contaminantes del Suelo/análisis
8.
Plants (Basel) ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145793

RESUMEN

The large variation in the response of sunflower to nitrogen fertilization indicates the need for studies to better adjust the optimum levels of this nutrient for production conditions. Our objectives were to analyze the agronomic yield of sunflower cultivars as a function of nitrogen fertilization; indicate the cultivar with high nitrogen use efficiency; and measure the adequate N dose for sunflower through nutritional efficiency. The completely randomized block design with split plots was used to conduct the experiments. The treatments included five nitrogen rates being allocated in the plots and the four sunflower cultivars. To estimate the nutrient use efficiency in the sunflower, we measured agronomic efficiency (AE), physiological efficiency (PE), agrophysiological efficiency (APE), apparent recovery efficiency (ARE), and utilization efficiency (UE). The results indicate that all cultivars had a reduction in AE due to the increase in N doses in the first crop. For PE, the highest values were observed for Altis 99 during the 2016 harvest. In that same harvest, Altis 99 had the highest APE. The dose of 30 kg ha-1 provided greater ARE for all cultivars in both crops, with greater emphasis on BRS 122 and Altis 99. The cultivation of cultivars Altis 99 and Multissol at a dose of 30 kg ha-1 in is recommended semiarid regions.

9.
PLoS One ; 15(5): e0233228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407422

RESUMEN

Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.


Asunto(s)
Bidens/crecimiento & desarrollo , Ambiente , Germinación , Semillas/crecimiento & desarrollo , Fotoperiodo , Sales (Química) , Estrés Fisiológico , Agua
10.
PLoS One ; 15(11): e0242350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33237922

RESUMEN

In Brazil, the atrazine has been applied frequently to join with glyphosate to control resistant biotypes and weed tolerant species to glyphosate. However, there are no studies about atrazine's behavior in soil when applied in admixture with glyphosate. Knowledge of atrazine's sorption and desorption mixed with glyphosate is necessary because the lower sorption and higher desorption may increase the leaching and runoff of pesticides, reaching groundwaters and rivers. Thereby, the objective of this study was to evaluate the adsorption mechanisms of atrazine when isolated and mixed with glyphosate formulations in a Red-Yellow Latosol. The maximum adsorbed amount of atrazine in equilibrium (qe) was not altered due to glyphosate formulations. The time to reach equilibrium was shortest when atrazine was mixed with the Roundup Ready® (te = 4.3 hours) due to the higher adsorption velocity (k2 = 2.3 mg min-1) in the soil. The highest sorption of atrazine occurred when mixed with the Roundup WG®, with the Freundlich sorption coefficient (Kf) equal to 2.51 and 2.43 for both formulation concentrations. However, other glyphosate formulations did not affect the sorption of atrazine. The desorption of atrazine was high for all treatments, with values close to 80% of the initial adsorbed amount, without differences among isolated and mixed treatments. The change in the velocity and capacity of sorption for the atrazine mixed with some glyphosate formulations indicates that further studies should be conducted to identify the mechanisms involved in this process.


Asunto(s)
Atrazina/química , Glicina/análogos & derivados , Contaminantes del Suelo/química , Suelo/química , Adsorción , Brasil , Arcilla/química , Glicina/química , Cinética , Residuos de Plaguicidas/química , Arena/química , Temperatura , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA