Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834340

RESUMEN

The nature of organic linker substituents plays an important role in gas sorption and separation as well as in catalytic applications of metal-organic frameworks. Zirconium-based UiO-66 is one of the most tunable members of this class of materials. However, the prediction of its properties is still not a fully solved problem. Here, the infrared spectroscopic measurements using highly sensitive CO probe molecules, combined with DFT calculations, are used in order to characterize the performance of different acidic sites caused by the presence of different organic linker substituents. The proposed model allowed differentiation between various active sites over the UiO-66 and clarification of their behavior. The experimental IR bands related to CO adsorption can be unambiguously assigned to one type of site or another. The previously undescribed highly red-shifted band is attributed to CO adsorbed on coordinatively unsaturated zirconium sites through an O atom. The results confirm the lower and higher Lewis's acidity of coordinatively unsaturated Zr sites on linker defects in the UiO-66 structure when electron-withdrawing and electron-donating groups are, respectively, included in a terephthalate moiety, whilst the Brønsted acidity of zirconium oxo-cluster remains almost unchanged.


Asunto(s)
Compuestos Organometálicos , Circonio , Espectroscopía Infrarroja por Transformada de Fourier , Dominio Catalítico , Circonio/química
2.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458719

RESUMEN

The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex, in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the surface of such materials.


Asunto(s)
Silicatos , Silicio , Hidrólisis , Silicatos/química , Dióxido de Silicio/química
3.
Chemistry ; 21(8): 3327-34, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25589382

RESUMEN

A modular approach has been followed for the synthesis of a series of fullerene-ionic-liquid (IL) hybrids in which the number of IL moieties (two or twelve), anion, and cation have been varied. The combination of C60 and IL give rise to new unique properties in the conjugates such as solubility in water, which was higher than 800 mg mL(-1) in several cases. In addition, one of the C60 -IL hybrids has been employed for the immobilization of palladium nanoparticles through ion exchange followed by reduction with sodium borohydride. Surprisingly, during the reduction several carbon nanostructures were formed that comprised nano-onions and nanocages with few-layer graphene sidewalls, which have been characterized by means of thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDAX), and high-resolution transmission electron microscopy (HRTEM). Finally, the material thus obtained was successfully applied as catalyst in Suzuki and Mizoroki-Heck reactions in a concentration of just 0.2 mol %. In the former process it was recyclable for five runs with no loss in activity.

4.
Phys Chem Chem Phys ; 16(41): 22677-86, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25230572

RESUMEN

Nanostructured La1-xSrxCo1-yFey-0.03Pd0.03O3-δ (LSCF-Pd) perovskites with fixed La-Sr composition (x = 0.4) and two different Fe contents (y = 0.2 and 0.8) were successfully synthesized using a one pot citrate method starting from nitrates of the metal cations. Pd-free La1-xSrxCo1-yFeyO3-δ (LSCF) systems were prepared for comparison. LSCF powders were calcined at 1300 °C and characterized by XRD and Rietveld refinement, EXAFS, XPS, TPR analyses. Promotion of La0.6Sr0.4Co0.8Fe0.2O3-δ and of La0.6Sr0.4Co0.2Fe0.8O3-δ by incorporation of palladium was evidenced by solving the local environment of Pd using EXAFS spectroscopy. XPS analyses, in agreement with TPR measurements, demonstrated an increase of superficial oxygen vacancies, the variation being much more pronounced in the La0.6Sr0.4Co0.8Fe0.17Pd0.03O3-δ sample. It is argued that this increase is associated with the introduction of Pd in the B site of LSCF. Moreover, ionic Pd(4+) was detected as the only palladium species on the perovskite surface, whereas Pd metal clusters of about 2 nm, not detectable in the surface, are embedded in the matrix and strongly interact with the bulk. This result has strong consequences in the synthesis and in the design of new perovskite materials that can be used as cathodes in fuel cell application at intermediate operating temperatures.

5.
J Colloid Interface Sci ; 663: 9-20, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38387188

RESUMEN

Peptide nucleic acid (PNA) is a DNA mimic that shows good stability against nucleases and proteases, forming strongly recognized complementary strands of DNA and RNA. However, due to its feeble ability to cross the cellular membrane, PNA activity and its targeting gene action is limited. Halloysite nanotubes (HNTs) are a natural and low-cost aluminosilicate clay. Because of their peculiar ability to cross cellular membrane, HNTs represent a valuable candidate for delivering genetic materials into cells. Herein, two differently charged 12-mer PNAs capable of recognizing as molecular target a 12-mer DNA molecule mimicking a purine-rich tract of neuroglobin were synthetized and loaded onto HNTs by electrostatic attraction interactions. After characterization, the kinetic release was also assessed in media mimicking physiological conditions. Resonance light scattering measurements assessed their ability to bind complementary single-stranded DNA. Furthermore, their intracellular delivery was assessed by confocal laser scanning microscopy on living MCF-7 cells incubated with fluorescence isothiocyanate (FITC)-PNA and HNTs labeled with a probe. The nanomaterials were found to cross cellular membrane and cell nuclei efficiently. Finally, it is worth mentioning that the HNTs/PNA can reduce the level of neuroglobin gene expression, as shown by reverse transcription-quantitative polymerase chain reaction and western blotting analysis.


Asunto(s)
ADN , Nanotubos , Arcilla , Neuroglobina , ARN Mensajero/genética , Nanotubos/química
6.
Nanomaterials (Basel) ; 14(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38786838

RESUMEN

The development of fluorescent materials that can act as sensors for the determination of metal ions in biological fluids is important since they show, among others, high sensitivity and specificity. However, most of the molecules that are used for these purposes possess a very low solubility in aqueous media, and, thus, it is necessary to adopt some derivation strategies. Clay minerals, for example, hectorite, as natural materials, are biocompatible and available in large amounts at a very low cost that have been extensively used as carrier systems for the delivery of different hydrophobic species. In the present work, we report the synthesis and characterization of a hectorite/phenanthroline nanomaterial as a potential fluorescent sensor for Zn ion detection in water. The interaction of phenanthroline with the Ht interlaminar space was thoroughly investigated, via both theoretical and experimental studies (i.e., thermogravimetry, FT-IR, UV-vis and fluorescence spectroscopies and XRD measurements), while its morphology was imaged by scanning electron microscopy. Afterwards, the possibility to use it as sensor for the detection of Zn2+ ions, in comparison to other metal ions, was investigated through fluorescent measurements, and the stability of the solid Ht/Phe/Zn complex was assessed by different experimental and theoretical measurements.

7.
RSC Adv ; 13(31): 21459-21470, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37465574

RESUMEN

Ce-doped SrFeO3 perovskite-type compounds are known as good thermocatalysts for the abatement of wastewater contaminants of emerging concern. In this work, Sr0.86Ce0.14FeO3-CeO2 perovskite-oxide systems with increasing amounts of cerium excess (0, 5, 10 and 15 mol% Ce), with respect to its maximum solubility in the perovskite, were prepared in one-pot by solution combustion synthesis and the effects of cerium excess on the chemical physical properties and thermocatalytic activity in the bisphenol A degradation were evaluated. The powders were characterized by powder X-ray diffraction combined with Rietveld refinement, X-ray photoelectron spectroscopy, thermal gravimetry, temperature programmed reduction, nitrogen adsorption, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques. Results highlight that the perovskite structural, redox, surface, and morphological properties are affected by the in situ co-growth of the main perovskite phase and ceria and that a larger cerium excess has a beneficial effect on the thermocatalytic performance of the perovskite oxide-ceria biphasic system, although ceria is not active as a thermocatalyst itself. Perovskite properties and performance are enhanced by the tetragonal distortion induced by the introduction of cerium excess in the synthesis. It is supposed that a larger oxygen mobility and an easier reducibility are among the most relevant features that contribute to superior thermocatalytic properties of these perovskite oxide-based systems. These results also suggest new perspectives in the nanocomposite preparation and their catalytic applications.

8.
J Colloid Interface Sci ; 620: 221-233, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428004

RESUMEN

The development of systems able to deliver genetic material into a target site is a challenge for modern medicine. Single-stranded peptide nucleic acids have attracted attention as promising therapeutic molecules for diagnostic and gene therapy. However, their poor cell membrane permeability represents a drawback for biomedical applications. Halloysite nanotubes (HNTs) are emerging materials in drug delivery applications both for their ability to penetrate cell membranes and for enhancing the solubility of drugs in biological media. Herein, we report the first example of the use of a nanocarrier based on halloysite labelled with fluorescent switchable halochromic oxazine molecules, to deliver a single-stranded peptide nucleic acids tetramer (PNAts) into living cells. The PNAts is covalently attached to halloysite (HNTs-PNA), whereas the fluorescent probe supramolecularly interacts with HNTs. The ability of the nanomaterial to bind complementary single-stranded DNA was assessed by resonance light scattering measurements. Finally, studies of cellular uptake were carried out by confocal laser scanning microscopy on normal and tumoral cell lines. This work highlights the usefulness of the covalent approach to generate HNTs-PNA nanomaterials for the potential targeting of future specific nucleic acids in living cells, which could open the doorway to novel possibilities for theranostic and gene therapy applications.


Asunto(s)
Nanotubos , Ácidos Nucleicos de Péptidos , Línea Celular Tumoral , Arcilla/química , Colorantes Fluorescentes , Nanotubos/química
9.
J Colloid Interface Sci ; 606(Pt 2): 1779-1791, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34507169

RESUMEN

Halloysite nanotubes (HNTs) represent a versatile core structure for the design of functional nanosystems of biomedical interest. However, the development of selective methodologies for the site-controlled functionalization of the nanotubes at specific sites is not an easy task. This study aims to accomplish a procedure for the site-selective/specific, "pin-point", functionalization of HNTs with polydopamine (HNTs@PDA). This goal was achieved, at pH 6.5, by exploiting the basicity of ZnO nanoparticles anchored on the HNTs external surface (HNTs@ZnO) to induce a punctual polydopamine polymerization and coating. The morphology and the chemical composition of the nanomaterial was demonstrated by several techniques. Turbidimetric analysis showed that PDA coating affected the aqueous stability of HNTs@PDA compared to both HNTs@ZnO and HNTs. Notably, hyperthermia studies revealed that the nanomaterial induced a local thermic rise, up to 50 °C, under near-infrared (NIR) irradiation. Furthermore, secondary functionalization of HNTs@PDA by selective grafting of biotin onto the PDA coating followed by avidin binding was also accomplished.


Asunto(s)
Nanotubos , Polímeros , Arcilla , Indoles
10.
Nanomaterials (Basel) ; 10(7)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698446

RESUMEN

A straightforward and economic procedure has been developed for the synthesis of a new polydopamine-like silica-based material that has been obtained by oxidation of catechol with KIO4 followed by reaction with 3-aminopropyltrimethoxysilane. All techniques adopted for characterization showed that the obtained material is rich in different functional groups and the morphological analyses revealed dimensions in the nanometric range. The hybrid material has been characterized by several techniques showing its polydopamine-like nature, and preliminary observations for dye adsorption have been reported.

11.
ACS Omega ; 4(4): 6994-7004, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459812

RESUMEN

Insoluble rust waste from the scraping of rusted iron-containing materials represents a cheap, eco-friendly, and available source of iron. LaFeO3 perovskite-type powders were successfully prepared by solution combustion synthesis using rust waste from an electricity transmission tower manufacturer. Solution combustion synthesis enabled introduction of this insoluble iron precursor directly into the final product, bypassing complex extraction procedures. Catalytic activity in the propylene oxidation of the waste-derived LaFeO3 with stoichiometric Fe/La ratio was almost identical to the commercial iron nitrate-derived LaFeO3, thus demonstrating the viability of this recycling solution. The amount of waste iron precursor was varied and its effect on the powder properties was investigated. A lesser stoichiometric amount of precursor produced a LaFeO3-La2O3 binary system, whereas a higher stoichiometric amount led to a LaFeO3-Fe2O3 binary system. Catalytic activity of iron-rich compositions in the propylene oxidation was only slightly lower than the stoichiometric one, whereas iron-poor compositions were much less active. This eco-friendly methodology can be easily extended to other iron perovskites with different chemical compositions and to other iron-containing compounds.

12.
ChemSusChem ; 10(6): 1202-1209, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-27897394

RESUMEN

Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after three cycles. The other two catalysts containing a p-xylyl linker and a bromide anion and different CNHs/bVImiX ratios showed an unprecedented increase of activity after recycling.


Asunto(s)
Dióxido de Carbono/química , Imidazoles/química , Nanotubos de Carbono/química , Reciclaje , Catálisis , Compuestos Epoxi/química
13.
J Phys Chem B ; 110(17): 8731-9, 2006 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-16640429

RESUMEN

The catalyst Pt(1 wt %)/Ce(0.6)Zr(0.4)O(2) is studied by CO-temperature programmed reduction (CO-TPR), isothermal oxygen storage complete capacity (OSCC), X-ray absorption spectroscopy (XAS) at the Pt L(III) edge, and in situ X-ray diffraction (in situ XRD), with the aim of elucidating the role of supported metal in CO oxidation by ceria-based three-way catalysts (TWC). The redox behavior of Pt(1 wt %)/Ce(0.6)Zr(0.4)O(2) is compared to that of bare ceria-zirconia. OSCC of redox-aged Pt/ceria-zirconia is twice that of bare ceria-zirconia, and the maximum of CO consumption occurs at a temperature about 300 K lower than redox-aged ceria-zirconia. XAS analysis allows one to evidence the formation of a platinum-cerium alloy in redox-aged samples and the stability of the metal particles toward oxidation and sintering during high-temperature treatments. Under CO flux at 773 K, bare ceria-zirconia shows a continuous drift of diffraction peaks toward smaller Bragg angles, due to a progressive increase of Ce(III) content. Under the same treatment, the structural rearrangement of Pt-supported ceria-zirconia starts after an induction time and takes place with an abrupt change of the lattice constant. The experimental evidence points to the role of supported Pt in modifying the redox properties of ceria-zirconia with respect to the bare support. It is proposed that the much faster bulk reduction observed by in situ XRD for redox-aged Pt/ceria-zirconia can be attributed to an easier release of reacted CO(2), producing a more effective turnover of reactants at the catalyst surface.

14.
Chempluschem ; 81(5): 471-476, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-31968778

RESUMEN

The surfaces of multi-walled carbon nanotubes (MWCNTs) were non-covalently modified using two bis-imidazolium dibromide derivatives having phenyl or pyrene groups. Due to the presence of the two pyrene groups the bis(pyren-1-ylmethylimidazolium) dibromide derivative was immobilised at a loading of about 15-16 wt %, whereas only <3 wt % of the phenyl derivative was immobilised. The presence of the two imidazolium cations helped the immobilisation of tetrachloropalladate ions after exchange with bromide ions. Tetrachloropalladate was used as pre-catalyst in several Suzuki-Miyaura carbon-carbon cross-coupling reactions in water or water/ethanol at 50 °C in only 0.1 mol % and compared with the non-supported pre-catalyst. The MWCNT-supported material was used in five consecutive cycles of the Suzuki-Miyaura reaction. Recycling using phenylboronic acid and 4-bromobenzaldehyde in water/ethanol was achieved with only a minor loss in activity. HRTEM images clearly showed the presence of the bis(pyren-1-ylmethylimidazolium) derivative on the sidewalls of MWCNTs.

15.
J Colloid Interface Sci ; 290(1): 201-7, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15935368

RESUMEN

The importance of pure-phase titanium oxide materials as catalysts, sensors, and photonic band-gap materials has been growing steadily. Recently, more attention has been focused on nanostructured titanium oxide showing controlled and periodic porosity on a nanometric scale. The nanocrystal size control of porous nanostructured titanium oxide in an anatase form is a crucial step for the organic template method. Simple template removal by evaporation in an inert atmosphere is reported in this article and compared with the calcination technique usually reported in the literature. The proposed method allows the formation of a double-porous (macro and meso) anatase phase. We demonstrate that it highly preserves the macropore order into a titanium oxide material and induces narrowly dispersed mesopores by controlling the nano-crystal size that is kept around 6 nm. For the proposed method, polystyrene beads are particularly suitable as templates, being evaporated in the temperature range of anatase existence. The final high surface area makes the materials appealing for applications as photocatalysts or sensors.

16.
ChemSusChem ; 4(12): 1830-7, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22110020

RESUMEN

Multilayered, covalently supported ionic liquid phase (mlc-SILP) materials were synthesized by using a new approach based on the grafting of bis-vinylimidazolium salts on different types of silica or polymeric supports. The obtained materials were characterized and tested as catalysts in the reaction of supercritical carbon dioxide with various epoxides to produce cyclic carbonates. The material prepared by supporting a bromide bis-imidazolium salt on the ordered mesoporous silica SBA-15 was identified as the most active catalyst for the synthesis of cyclic carbonates and displayed improved productivity compared with known supported ionic liquid catalysts. The catalyst retained its high activity upon reuse in consecutive catalytic runs. This is the first report of the application of mlc-SILP materials as catalysts in a reaction for the fixation of carbon dioxide. Rapid, parallel screening and comparison of the catalysts was performed by means of high-throughput experimentation.


Asunto(s)
Dióxido de Carbono/química , Imidazoles/química , Líquidos Iónicos/química , Compuestos de Vinilo/química , Carbonatos/química , Catálisis , Compuestos Epoxi/química
17.
Chem Commun (Camb) ; 46(34): 6317-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20676428

RESUMEN

The appropriate combination of titania and silica, sulfating and non-sulfating support, respectively, results in Pd catalysts with improved water and sulfur tolerance in methane combustion. For the first time the catalyst recovers the initial activity after one cycle under lean-burn conditions without additional regenerating treatments.


Asunto(s)
Metano/química , Paladio/química , Sulfatos/química , Azufre/química , Agua/química , Catálisis , Dióxido de Silicio/química , Temperatura , Titanio/química
18.
J Synchrotron Radiat ; 12(Pt 4): 499-505, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15968129

RESUMEN

An in situ cell for reductive and oxidative treatments at different temperatures that allows the possibility of recording data as a function of temperature has been designed and constructed for X-ray absorption experiments at the GILDA beamline BM08 of ESRF. The cell is linked to a mass quadrupole spectrometer providing control of the reaction gases and monitoring of the products. The apparatus allows measurements to be performed both in transmission and fluorescence geometry. The cell was tested by studying the CO oxidation reaction promoted by a Pt/ceria-zirconia-supported catalyst. The CO(2) yield is correlated with the structural results confirming the existence of a strong metal-support interaction between the Pt metal clusters and the ceria-zirconia support.


Asunto(s)
Dióxido de Carbono/análisis , Análisis de Inyección de Flujo/instrumentación , Oxígeno/análisis , Manejo de Especímenes/instrumentación , Espectrometría por Rayos X/instrumentación , Difracción de Rayos X/instrumentación , Dióxido de Carbono/química , Catálisis , Análisis de Inyección de Flujo/métodos , Oxidación-Reducción , Oxígeno/química , Platino (Metal)/química , Manejo de Especímenes/métodos , Espectrometría por Rayos X/métodos , Temperatura , Difracción de Rayos X/métodos , Circonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA