Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 143(40): 16538-16548, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34524811

RESUMEN

Nanoscale zerovalent iron (nZVI) is considered as a highly efficient material for sequestrating arsenite, but the origin of its high efficacy as well as the chemical transformations of arsenite during reaction is not well understood. Here, we report an in situ X-ray absorption spectroscopy (XAS) study to investigate the complex mechanism of nZVI reaction with arsenite under anaerobic conditions at the time scale from seconds to days. The time-resolved XAS analysis revealed a gradual oxidation of AsIII to AsV in the course of minutes to hours in both the solid and liquid phase for the high (above 0.5 g/L) nZVI dose system. When the reaction time increased up to 60 days, AsV became the dominant species. The quick-scanning extended X-ray absorption fine structure (QEAXFS) was introduced to discover the transient intermediate at the highly reactive stage, and a small red-shift in As K-edge absorption edge was observed. The QEAXFS combined with density functional theory (DFT) calculation suggested that the red-shift is likely due to the electron donation in a Fe-O-As complex and possible active sites of As sequestrations include Fe(OH)4 and 4-Fe cluster. This is the first time that the transient reaction intermediate was identified in the As-nZVI sequestration system at the fast-reacting early stage. This study also demonstrated usefulness of in situ monitoring techniques in environmental water research.


Asunto(s)
Arsenitos
2.
Phys Chem Chem Phys ; 17(34): 22064-71, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26234367

RESUMEN

Nanotubular TiO2 has attracted considerable attention owing to its unique functional properties, including high surface area and vectorial charge transport along the nanotube, making it a good photocatalytic material. Anodic TiO2-nanotube (TiNT) arrays on a Ti foil substrate were prepared by electrochemical anodic oxidation and SEM/HRTEM/XRD analyses have suggested that the walls of TiO2 tubes are formed from stacked [101] planes (anatase). Both HRTEM and XRD indicate an interplanar spacing of d101 = 0.36 nm in the wall structure. Despite the large amount of work done on nanotube synthesis, a thorough investigation of the electronic and atomic structures of free-standing TiNT arrays has not yet been carried out. X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and scanning photoelectron microscopy (SPEM) are employed herein to examine the electronic and atomic structures at the top and bottom of TiNT arrays. These analyses demonstrate the presence of mixed valence states of the Ti ions (Ti(3+) and Ti(4+)) and a structural distortion at the bottom cap region of the TiNT. Additionally, the results obtained herein suggest the formation of a defective anatase phase at the bottom cap barrier layer between the Ti foil substrate and TiNT during the growth of electrochemically anodized nanotubes.

3.
Water Sci Technol ; 71(8): 1189-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909729

RESUMEN

Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹° to 7.1 × 10⁻¹° m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.


Asunto(s)
Carbono/química , Carbón Mineral/análisis , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
4.
Environ Technol ; : 1-11, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35861580

RESUMEN

NaNO2/MgO/titania spheres prepared via aerosol-assisted self-assembly (AASA) were used as sorbents for CO2 adsorption at moderate temperature. The titania framework as support would allow MgO to disperse well, thereby increasing the contact between MgO and NaNO2 to enhance carbonation. In this study, the effect of Mg/Ti molar ratio and NaNO2 addition amount on CO2 adsorption was investigated. Results showed that the sorbent prepared by AASA with Mg/Ti molar ratio of 2 following the introduction of 30 wt% NaNO2 presented ∼1 µm particle size with rough sphere surface morphology and mesoporous properties, where the surface area and pore volume were 72 m2/g and 0.18 cm3/g, respectively. With NaNO2 addition, the kinetics and capacity of CO2 adsorption significant increased. In the cyclic adsorption/desorption experiment, the superior stability over the NaNO2/MgO/titania spheres was mainly ascribed to the confined space suppressed the degree of the sintering effect. These results indicated the potential application of the nanochannel-restricted sorbent for rapid, high-capacity, and stable CO2 capture at moderate temperatures.

5.
Environ Sci Pollut Res Int ; 29(46): 70479-70492, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35589891

RESUMEN

This study applied multivariate statistical analysis (MSA) to synthetic data simulated by a river water quality model to verify whether the MSA can correctly infer the pollution scenario assigned in the river water quality model. The results showed that when assessing the number and possible locations of pollution sources based on the results of cluster analysis (CA), two instead of three pollution point source were identified when considering the hydraulic variations of surface water. When discussing the principal component analysis (PCA) result, the second principal component (PC2) and the Pearson correlation coefficients among the pollutants should also be considered, which can infer that Cu, Pb, Cr, and Ni are contributed by the same pollutant point source, and Cu is also influenced by another pollutant point source. This result also implies that the solid and liquid partition coefficients (Kd) of pollutants can affect the interpretation of the PCA results, so the Kd values should be determined before tracing the pollution sources to facilitate the evaluation of the source characteristics and potential targets. This study established a working framework for surface water pollution traceability to enhance the effectiveness of pollution traceability.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Ríos , Taiwán , Contaminantes Químicos del Agua/análisis , Calidad del Agua
6.
J Hazard Mater ; 429: 128328, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114455

RESUMEN

Rational design of nanocomposite electrode materials with high conductivity, activity, and mechanical strength is critical in electrocatalysis. Herein, freestanding, flexible heteronanocomposites were fabricated in situ by carbonizing electrospun fibers with TiO2 nanoparticles on the surface for electrocatalytic degradation of water pollutants. The carbonization temperature was observed as a dominant parameter affecting the characteristics of the electrodes. As the carbonization temperature increased to 1000 °C, the conductivity of the electrode was significantly enhanced due to the high degree of graphitization (ID/IG ratio 1.10) and the dominant rutile phase. Additionally, the formation of TiO2 protrusions and the C-Ti heterostructure were observed at 1000 °C, which contributed to increasing the electrocatalytic activity. When 1.5 V (vs. Ag/AgCl) was employed, electrocatalytic experiments using the electrode achieved 90% degradation of crystal violet and 10.9-87.5% for an array of micropollutants. The electrical energy-per-order (EEO) for the removal of crystal violet was 0.7 kWh/m3/order, indicative of low-energy requirement. The efficient electrocatalytic activity can be ascribed to the fast electron transfer and the strong ability to generate hydroxyl radicals. Our findings expand efforts for the design of highly conductive heteronanocomposites in a facile in situ approach, providing a promising perspective for the energy-efficient electrocatalytic degradation of water pollutants.

7.
J Hazard Mater ; 423(Pt A): 127084, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34488095

RESUMEN

An integrated process of filtration and electrosorption was first applied to enable high-performance arsenic removal for groundwater remediation. An active manganese dioxide-rice husk biochar composite (active BC) filter was utilized for oxidization of As(III) to As(V) and initial removal of As(III, V). Subsequently, electrosorption by capacitive deionization (CDI) was applied as a posttreatment to improve arsenic removal. The active BC approach exhibited fast removal rates of 0.75 and 0.63 g mg-1 h-1 and high maximum removal capacities of 40.76 and 48.15 mg g-1 for As(III) and As(V), respectively. Importantly, column experiments demonstrated that the arsenic removal capacity in the active BC filter was 2.88 mg g-1, which was 72 times higher than that of BC. The results were due to the high efficiency (94%) of redox transformation of As(III) to As(V). The electrosorptive removal of arsenic was further controlled by changing the voltage in CDI. With a charging step of 1.2 V, the total arsenic concentration can be reduced to 0.001 mg L-1 with a low energy consumption of 0.0066 kW h m-3. Furthermore, the integrated system can remove As from real groundwater to achieve the World Health Organization guideline value for drinking water quality.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Carbón Orgánico , Contaminantes Químicos del Agua/análisis
8.
Sci Rep ; 12(1): 20860, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460746

RESUMEN

Geochemical variations of sedimentary records contain vital information for understanding paleoenvironment and paleoclimate. However, to obtain quantitative data in the laboratory is laborious, which ultimately restricts the temporal and spatial resolution. Quantification based on fast-acquisition and high-resolution provides a potential solution but is restricted to qualitative X-ray fluorescence (XRF) core scanning data. Here, we apply machine learning (ML) to advance the quantification progress and target calcium carbonate (CaCO3) and total organic carbon (TOC) for quantification to test the potential of such an XRF-ML approach. Raw XRF spectra are used as input data instead of software-based extraction of elemental intensities to avoid bias and increase information. Our dataset comprises Pacific and Southern Ocean marine sediment cores from high- to mid-latitudes to extend the applicability of quantification models from a site-specific to a multi-regional scale. ML-built models are carefully evaluated with a training set, a test set and a case study. The acquired ML-models provide better results with R2 of 0.96 for CaCO3 and 0.78 for TOC than conventional methods. In our case study, the ML-performance for TOC is comparably lower but still provides potential for future optimization. Altogether, this study allows to conveniently generate high-resolution bulk chemistry records without losing accuracy.


Asunto(s)
Carbonato de Calcio , Carbono , Rayos X , Fluorescencia , Aprendizaje Automático , Sedimentos Geológicos
9.
J Hazard Mater ; 403: 123630, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264857

RESUMEN

Although the low-temperature reaction mechanism of catalytic CO oxidation reaction remains unclear, the active sites of copper play a crucial role in this mechanism. One-step aerosol-assisted self-assembly (AASA) process has been developed for the synthesis of mesoporous Cu-doped TiO2 microspheres (CuTMS) to incorporate copper into the TiO2 lattice. This strategy highly enhanced the dispersion of copper from 41.10 to 83.65%. Long-term stability of the as-synthesized CuTMS materials for catalytic CO oxidation reaction was monitored using real-time mass spectrum. Isolated CuO and Cu-O-Ti were formed as determined by X-ray photoelectron spectroscopy (XPS). The formation of the Cu-O-Ti bonds in the crystal lattice changes the electron densities of Ti(IV) and O, causing a subsequent change in Ti(III)/Ti(IV) and Onon/OTotal ratio. 20CuTMS contained the highest lattice distortion (0.44) in which the Onon/OTotal ratio is lowest (0.18). This finding may be attributed to the absolute formation of the Cu-O-Ti bonds in the crystal lattice. However, the decrease of Ti(III)/Ti(IV) ratio to about 0.35 of 25CuTMS was caused by the CuO cluster formation on the surface. N2O titration-assisted H2 temperature-programmed reduction and in-situ Fourier transform infrared spectroscopy revealed the properties of copper and effects of active sites.

10.
Sci Rep ; 9(1): 6601, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036842

RESUMEN

Conventional pollution monitoring strategies for heavy metals are often costly and unpractical. Innovative sampling and analytical approaches are therefore needed to efficiently monitor large areas. This study presents a novel, simple, fast, and inexpensive method to monitor heavy metal pollution that uses cation-exchange resin sachets and the micro-XRF core-scanning technique (XRF-CS). The resin passive samplers act as concentrators of cationic species and can be readily deployed spatially and temporally to record pollution signals. The large number of analytical tasks are then overcome by the fast and non-destructive XRF-CS to precisely assess elemental concentrations. Quantifying element loading involves direct comparison with a set of identically prepared and scanned resin reference standards containing Ca, Ti, Cr, Mn, Ni, Cu, Zn, Pb. The results show that within the test range (from 0-1000 s mg kg-1), the calibration lines have excellent regressions (R2 ≥ 0.97), even at the shortest exposure time (1 s). A pilot field survey of a suspected polluted area in central Taiwan, where 30 resin sachets had been deployed, identified a pollution hot spot in a rapid and economical manner. Therefore, this approach has the potential to become a valuable tool in environmental monitoring and forensics.

11.
ACS Catal ; 8(5): 4278-4287, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29755829

RESUMEN

TiO2 has long been recognized as a stable and reusable photocatalyst for water splitting and pollution control. However, it is an inefficient anode material in the absence of photoactivation due to its low electron conductivity. To overcome this limitation, a series of conductive TiO2 nanotube array electrodes have been developed. Even though nanotube arrays are effective for electrochemical oxidation initially, deactivation is often observed within a few hours. To overcome the problem of deactivation, we have synthesized cobalt-doped Black-TiO2 nanotube array (Co-Black NTA) electrodes that are stable for more than 200 h of continuous operation in a NaClO4 electrolyte at 10 mA cm-2. Using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance spectroscopy, and DFT simulations, we are able to show that bulk oxygen vacancies (Ov) are the primary source of the enhanced conductivity of Co-Black. Cobalt doping both creates and stabilizes surficial oxygen vacancies, Ov, and thus prevents surface passivation. The Co-Black electrodes outperform dimensionally stable IrO2 anodes (DSA) in the electrolytic oxidation of organic-rich wastewater. Increasing the loading of Co leads to the formation of a CoO x film on top of Co-Black electrode. The CoO x /Co-Black composite electrode was found to have a lower OER overpotential (352 mV) in comparison to a DSA IrO2 (434 mV) electrode and a stability that is greater than 200 h in a 1.0 M KOH electrolyte at a current density of 10 mA cm-2.

12.
Chemosphere ; 184: 924-931, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28655111

RESUMEN

A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm2. The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L-1, which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO3- > SO42- > F- > Cl- >As. The electrosorption selectivity for cations could be ordered as follows: Ca2+ > Mg2+ > Na+ âˆ¼ K+. Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater.


Asunto(s)
Arsénico/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cationes Bivalentes , Cationes Monovalentes , Carbón Orgánico , Electrodos , Agua Subterránea , Iones , Taiwán
13.
Chemosphere ; 152: 490-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27003371

RESUMEN

Hollow core-shell mesoporous TiO2 microspheres were synthesized by a template-free solvothermal route for efficient photocatalytic degradation of acetaminophen. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Barrett-Joyner-Halenda data revealed a micrometer-sized mesoporous anatase TiO2 hollow sphere with large surface area and efficient light harvesting. For the photocatalytic degradation of acetaminophen in 60 min, the conversion fraction of the drug increased from 88% over commercial Degussa P25 TiO2 to 94% over hollow spheres with about 25% increase in the initial reaction rate. Even after 10 repeated runs, the recycled hollow spheres showed good photodegradation activity. The intermediates generated in the photocatalytic reactions were eventually converted into molecules that are easier to handle. The simple fabrication route would facilitate the development of photocatalysts for the decomposition of environmental contaminants.


Asunto(s)
Acetaminofén/química , Luz , Microesferas , Titanio/química , Titanio/efectos de la radiación , Contaminantes Químicos del Agua/química , Catálisis , Microscopía Electrónica de Rastreo , Fotólisis , Porosidad , Difracción de Rayos X
14.
J Hazard Mater ; 291: 9-17, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-25748997

RESUMEN

Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives.


Asunto(s)
Acetaminofén/química , Nanotubos , Óxido de Zinc/química , Catálisis , Residuos de Medicamentos , Electrodos , Oxidación-Reducción , Fotoquímica , Difracción de Rayos X
15.
Chem Commun (Camb) ; 51(29): 6361-4, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25761526

RESUMEN

Through the addition of a solid-state precursor, a large-scale, transparent, and free-standing film of 1-D rutile/anatase TiO2 nanorod arrays can be fabricated by dynamically changing the acidity and concentrations of titanium and chloride ions, and creating anatase growth-friendly conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA