Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Ther ; 31(12): 3564-3578, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37919903

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has been successful for hematological malignancies. Still, a lack of efficacy and potential toxicities have slowed its application for other indications. Furthermore, CAR T cells undergo dynamic expansion and contraction in vivo that cannot be easily predicted or controlled. Therefore, the safety and utility of such therapies could be enhanced by engineered mechanisms that engender reversible control and quantitative monitoring. Here, we use a genetic tag based on the enzyme Escherichia coli dihydrofolate reductase (eDHFR), and derivatives of trimethoprim (TMP) to modulate and monitor CAR expression and T cell activity. We fused eDHFR to the CAR C terminus, allowing regulation with TMP-based proteolysis-targeting chimeric small molecules (PROTACs). Fusion of eDHFR to the CAR does not interfere with cell signaling or its cytotoxic function, and the addition of TMP-based PROTACs results in a reversible and dose-dependent inhibition of CAR activity via the proteosome. We show the regulation of CAR expression in vivo and demonstrate imaging of the cells with TMP radiotracers. In vitro immunogenicity assays using primary human immune cells and overlapping peptide fragments of eDHFR showed no memory immune repertoire for eDHFR. Overall, this translationally-orientied approach allows for temporal monitoring and image-guided control of cell-based therapies.


Asunto(s)
Inmunoterapia Adoptiva , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Receptores de Antígenos de Linfocitos T/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L271-L282, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188013

RESUMEN

Fibroblast activation protein (FAP), a cell surface serine protease, is upregulated on a subset of activated fibroblasts (often distinct from α-smooth muscle actin-expressing myofibroblasts) associated with matrix remodeling, including fibroblasts in idiopathic pulmonary fibrosis (Acharya PS, Zukas A, Chandan V, Katzenstein AL, Puré E. Hum Pathol 37: 352-360, 2006.). As FAP+ fibroblasts could be pivotal in either breakdown and/or production of collagen and other matrix components, the goal of this study was to define the role of FAP+ cells in pulmonary fibrosis in two established, but different, mouse models of chronic lung fibrosis: repetitive doses of intratracheal bleomycin and a single dose of an adenoviral vector encoding constitutively active TGF-ß1 (Ad-TGFß). To determine their role in fibrotic remodeling, FAP-expressing cells were depleted by injection of T cells expressing a chimeric antigen receptor specific for murine FAP in mice with established fibrosis. The contribution of FAP to the function of FAP-expressing cells was assessed in FAP knockout mice. Using histological analyses, quantification of soluble collagen content, and flow cytometry, we found that loss of FAP+ cells exacerbated fibrosis in the bleomycin model, a phenotype largely recapitulated by the genetic deletion of FAP, indicating that FAP plays a role in this model. In contrast, depletion of FAP+ cells or genetic deletion of FAP had little effect in the Ad-TGFß model highlighting the potential for distinct mechanisms driving fibrosis depending on the initiating insult. The role of FAP in human lung fibrosis will need to be well understood to guide the use of FAP-targeted therapeutics that are being developed.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis/inducido químicamente , Factor de Crecimiento Transformador beta/metabolismo , Animales , Bleomicina/farmacología , Colágeno/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Lab Invest ; 97(11): 1321-1331, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28846077

RESUMEN

Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Pulmón/metabolismo , Proteínas de Neoplasias/metabolismo , Comunicación Paracrina , Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Esferoides Celulares
4.
Biochem Cell Biol ; 95(3): 428-436, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28177758

RESUMEN

This study examined the metabolic response of lung cancer cells and normal lung fibroblasts to hypoxia and acidity. GLUT1 and HXKII mRNA/protein expression was up-regulated under hypoxia in the MRC5 fibroblasts and in the A549 and H1299 lung cancer cell lines, indicating intensified glucose absorption and glycolysis. Under hypoxia, the LDHA mRNA and LDH5 protein levels increased in the cancer cells but not in the fibroblasts. Acidity suppressed the above-mentioned hypoxia effect. PDH-kinase-1 (PDK1 mRNA and protein) and inactive phosphorylated-PDH protein levels were induced under hypoxia in the cancer cells, whereas these were reduced in the MRC5 lung fibroblasts. In human tissue sections, the prevalent expression patterns supported the contrasting metabolic behavior of cancer cells vs. tumor fibroblasts. The monocarboxylate/lactate transporter 1 (MCT1) was up-regulated in all the cell lines under hypoxic conditions, but it was suppressed under acidic conditions. The mitochondrial DNA (mtDNA) content per cell decreased significantly in the A549 cancer cell line under hypoxia, but it increased in the MRC5 fibroblasts. Taking into account these findings, we suggest that, under hypoxia, cancer cells intensify the anaerobic direction in glycolysis, while normal fibroblasts prefer to seek energy by intensifying the aerobic use of the available oxygen.


Asunto(s)
Ácidos/farmacología , Fibroblastos/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Hexoquinasa/metabolismo , Hipoxia/fisiopatología , Neoplasias Pulmonares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Western Blotting , Células Cultivadas , Fibroblastos/patología , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 1/genética , Hexoquinasa/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Transportadores de Ácidos Monocarboxílicos/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores/genética
5.
Br J Cancer ; 115(3): 312-21, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27380135

RESUMEN

BACKGROUND: The cellular autophagic response to radiation is complex. Various cells and tissues respond differentially to radiation, depending on both the dose of exposure and the time post irradiation. In the current study, we determined the autophagosomal and lysosomal response to radiation in lung cancer cell lines by evaluating the expression of the associated proteins, as well as the effect of relevant gene silencing in radio and chemosensitisation. Furthermore, tumour sensitisation was evaluated in in vivo autophagic gene silencing model after irradiation. METHODS: A549 and H1299 cell lines were utilised as in vitro cancer models. Both cell lines were transfected with various small-interfering RNAs, silencing auto-lysosomal genes, and irradiated with 4 Gy. Cell growth response was evaluated with AlamarBlue assay. Western blot and confocal microscopy were utilised for the characterisation of the auto-lysosomal flux. Also, the H1299 cell line was stable transfected with small-hairpin RNA of the MAP1LC3A gene, and the tumour radiosensitisation in Athymic Nude-Foxn1(nu) was evaluated. RESULTS: Following exposure to 4 Gy of radiation, A549 cells exhibited a significant induction of the autophagic flux, which was not supported by transcriptional activation of auto-lysosomal genes (LC3A, LC3B, p62, TFEB and LAMP2a), resulting in aggresome accumulation. Recovery of transcriptional activity and autophagy efficacy occurred 7 days post irradiation. Alternatively, H1299 cells, a relatively radio-resistant cell line, sharply responded with an early (at 2 days) transcriptional activation of auto-lysosomal genes that sustained an effective autophagosomal flux, resulting in adequate aggresome clearance. Subsequently, we tested the silencing of four genes (LC3A, LC3B, TFEB and LAMP2a), confirming a significant radiosensitisation and chemosensitisation to various chemotherapeutic agents, including cisplatin and taxanes. In mouse xenografts, exposure to radiation significantly reduced tumour growth (P<0.001), which was exacerbated among shLC3A-H1299 transfected tumours. CONCLUSIONS: The ability of lung cancer cells to survive after irradiation at 4 Gy depends on their ability to sustain a functional autophagic flux. Abrogation of such ability results in increased radiosensitivity and susceptibility to various chemotherapy agents. Selective inhibitors of cancer cell autophagic function may prove important for the eradication of lung cancer.


Asunto(s)
Autofagia , Neoplasias Pulmonares/patología , Animales , Línea Celular Tumoral , Silenciador del Gen , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ratones , Ratones Desnudos , Tolerancia a Radiación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Sci Rep ; 14(1): 11006, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744944

RESUMEN

With cancer immunotherapy and precision medicine dynamically evolving, there is greater need for pre-clinical models that can better replicate the intact tumor and its complex tumor microenvironment (TME). Precision-cut tumor slices (PCTS) have recently emerged as an ex vivo human tumor model, offering the opportunity to study individual patient responses to targeted therapies, including immunotherapies. However, little is known about the physiologic status of PCTS and how culture conditions alter gene expression. In this study, we generated PCTS from head and neck cancers (HNC) and mesothelioma tumors (Meso) and undertook transcriptomic analyses to understand the changes that occur in the timeframe between PCTS generation and up to 72 h (hrs) in culture. Our findings showed major changes occurring during the first 24 h culture period of PCTS, involving genes related to wound healing, extracellular matrix, hypoxia, and IFNγ-dependent pathways in both tumor types, as well as tumor-specific changes. Collectively, our data provides an insight into PCTS physiology, which should be taken into consideration when designing PCTS studies, especially in the context of immunology and immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Transcriptoma , Medicina de Precisión/métodos , Inmunoterapia/métodos
7.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37090547

RESUMEN

The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR and to anti-PD1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.

8.
Nat Commun ; 14(1): 5110, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607999

RESUMEN

The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, here we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+ CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR T cells and to anti-PD-1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.


Asunto(s)
Terapia de Inmunosupresión , Neoplasias Pancreáticas , Humanos , Inmunoterapia , Movimiento Celular , Neoplasias Pancreáticas/terapia , Linfocitos T CD8-positivos
9.
Antibodies (Basel) ; 11(2)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466279

RESUMEN

Precision-cut tumor slices (PCTS) have recently emerged as important ex vivo human tumor models, offering the opportunity to study individual patient responses to targeted immunotherapies, including CAR-T cell therapies. In this review, an outline of different human tumor models available in laboratory settings is provided, with a focus on the unique characteristics of PCTS. Standard PCTS generation and maintenance procedures are outlined, followed by an in-depth overview of PCTS utilization in preclinical research aiming to better understand the unique functional characteristics of cytotoxic T cells within human tumors. Furthermore, recent studies using PCTS as an ex vivo model for predicting patient responses to immunotherapies and other targeted therapies against solid tumors are thoroughly presented. Finally, the advantages and limitations of the PCTS models are discussed. PCTS are expected to gain momentum and be fully utilized as a significant tool towards better patient stratification and personalized medicine.

10.
Clin Cancer Res ; 28(24): 5330-5342, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972732

RESUMEN

PURPOSE: Despite the success of chimeric antigen receptor (CAR) T-cell therapy against hematologic malignancies, successful targeting of solid tumors with CAR T cells has been limited by a lack of durable responses and reports of toxicities. Our understanding of the limited therapeutic efficacy in solid tumors could be improved with quantitative tools that allow characterization of CAR T-targeted antigens in tumors and accurate monitoring of response. EXPERIMENTAL DESIGN: We used a radiolabeled FAP inhibitor (FAPI) [18F]AlF-FAPI-74 probe to complement ongoing efforts to develop and optimize FAP CAR T cells. The selectivity of the radiotracer for FAP was characterized in vitro, and its ability to monitor changes in FAP expression was evaluated using rodent models of lung cancer. RESULTS: [18F]AlF-FAPI-74 showed selective retention in FAP+ cells in vitro, with effective blocking of the uptake in presence of unlabeled FAPI. In vivo, [18F]AlF-FAPI-74 was able to detect FAP expression on tumor cells as well as FAP+ stromal cells in the tumor microenvironment with a high target-to-background ratio. We further demonstrated the utility of the tracer to monitor changes in FAP expression following FAP CAR T-cell therapy, and the PET imaging findings showed a robust correlation with ex vivo analyses. CONCLUSIONS: This noninvasive imaging approach to interrogate the tumor microenvironment represents an innovative pairing of a diagnostic PET probe with solid tumor CAR T-cell therapy and has the potential to serve as a predictive and pharmacodynamic response biomarker for FAP as well as other stroma-targeted therapies. A PET imaging approach targeting FAP expressed on activated fibroblasts of the tumor stroma has the potential to predict and monitor therapeutic response to FAP-targeted CAR T-cell therapy. See related commentary by Weber et al., p. 5241.


Asunto(s)
Gelatinasas , Serina Endopeptidasas , Línea Celular Tumoral , Tomografía de Emisión de Positrones , Linfocitos T , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Galio
11.
Mol Ther Oncolytics ; 18: 360-371, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32802940

RESUMEN

The therapeutic efficacy of adoptive transfer of T cells transduced with chimeric antigen receptors (CARs) has been limited in the treatment of solid cancers, partly due to tumor antigen heterogeneity. Overcoming lack of universal tumor antigen expression would be achieved if CAR T cells could induce bystander effects. To study this process, we developed a system where CAR T cells targeting mesothelin could cure tumors containing 100% antigen-positive cells in immunocompetent mice. Using this model, we found that the CAR T cells were unable to cure tumors, even when only 10% of the tumor cells were mesothelin negative. A bystander effect was not induced by co-administration of anti-PD-1, anti-CTLA-4, or anti-TGF-ß (transforming growth factor ß) antibodies; agonistic CD40 antibodies; or an IDO (indoleamine 2,3-dioxygenase) inhibitor. However, pretreatment with a non-lymphodepleting dose of cyclophosphamide (CTX) prior to CAR T cells resulted in cures of tumors with up to 25% mesothelin-negative cells. The mechanism was dependent on endogenous CD8 T cells but not on basic leucine zipper transcription factor ATF-like 3 (BATF3)-dependent dendritic cells. These data suggest that CAR T cell therapy of solid tumors, in which the targeted antigen is not expressed by the vast majority of tumor cells, will not likely be successful unless combination strategies to enhance bystander effects are used.

12.
Life Sci ; 232: 116562, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201845

RESUMEN

AIMS: Lung cancer is one of the main causes of cancer-related deaths worldwide and radiotherapy is a major treatment of choice. However, radioresistance is a main reason for radiotherapy failure or tumor relapse. Here, we investigated possible mechanisms associated with cancer cell radioresistance. MATERIALS AND METHODS: We compared two newly derived cell lines, namely A549-IR3 and A549-IR6, which survived repeated (3 or 6 times) 4 Gy exposure of parental A549 lung cancer cell line. DNA repair ability, stemness and senescence were comparatively studied. KEY FINDINGS: A549-IR3 exhibited higher proliferation ability and radioresistance compared to parental and A549-IR6 cells. Enhanced radioresistance was not accompanied by chemoresistance to cisplatin or docetaxel. DNA repair kinetics (γΗ2ΑΧ expression) were similar in all cell lines. A549-IR3 cells exhibited a significant rise in stem cell markers (CD44, CD133, OCT4, SOX2 and NANOG) whereas A549-IR6 displayed an increased senescent population. SIGNIFICANCE: Cancer cells surviving after radiotherapy may follow two different escape pathways: selection for radioresistance resulting in regrowth, and in clinical terms relapse, or above an irradiation threshold, stem-cells die and cancer cells become senescent, leading the tumor to a state of dormancy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Células Madre Neoplásicas/efectos de la radiación , Células A549 , Envejecimiento/efectos de la radiación , Apoptosis/efectos de la radiación , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Reparación del ADN , Humanos , Neoplasias Pulmonares/metabolismo , Recurrencia Local de Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Tolerancia a Radiación
13.
Oncoimmunology ; 8(9): e1638211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428531

RESUMEN

Given the growing interest and promising preliminary results of immunotherapy in malignant pleural mesothelioma (MPM), it has become important to more fully understand the immune landscape in this tumor. This may be especially relevant in deciding who might benefit most from checkpoint blockade or agonist antibody therapy. Since the phenotype of tumor infiltrating lymphocytes (TILs) in MPM has not been fully described and their function has not been carefully assessed, we collected fresh tumor and blood from 22 patients undergoing surgical resection and analysed single cell suspensions by flow cytometry. The functionality of TILs was assessed by measurement of cytokine expression (IFN-γ) following overnight stimulation ex vivo. Results showed low numbers of CD8+ TILs whose function was either moderately or severely suppressed. The degree of TIL hypofunction did not correlate with the presence of co-existing macrophages or neutrophils, nor with expression of the inhibitory receptors PD-1, CD39 and CTLA-4. Hypofunction was associated with higher numbers of CD4 regulatory T cells (Tregs) and with expression of the inhibitory receptor TIGIT. On the other hand, presence of tissue-resident memory (Trm) cells and expression of TIM-3 on CD8+ cells were positively associated with cytokine production. However, Trm function was partially suppressed when the transcription factor Eomesodermin (Eomes) was co-expressed. Understanding the function of TILs in malignant mesothelioma may have clinical implications for immunotherapy, especially in choosing the best immunotherapy targets. Our data suggests that Treg cell blocking agents or TIGIT inhibitor antibodies might be especially valuable in these patients.

14.
Cancer Biol Med ; 14(3): 293-301, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28884046

RESUMEN

OBJECTIVE: : Cancer cell radioresistance is a stumbling block in radiation therapy. The activity in the nuclear factor kappa B (NFκB) pathway correlates with anti-apoptotic mechanisms and increased radioresistance. The IKK complex plays a major role in NFκB activation upon numerous signals. In this study, we examined the interaction between ionizing radiation (IR) and different members of the IKK-NFκB pathway, as well as upstream activators, RAF1, ERK, and AKT1. METHODS: : The effect of 4 Gy of IR on the expression of the RAF1-ERK-IKK-NFκB pathway was examined in A549 and H1299 lung cancer cell lines using Western blot analysis and confocal microscopy. We examined changes in radiation sensitivity using gene silencing or pharmacological inhibitors of ERK and IKKß. RESULTS: : IKKα, IKKγ, and IκBα increased upon exposure to IR, thereby affecting nuclear levels of NFκB (phospho-p65). ERK inhibition or siRNA-mediated down-regulation of RAF1 suppressed the post-irradiation survival of the examined lung cancer cell lines. A similar effect was detected on survival upon silencing IKKα/IKKγ or inhibiting IKKß. CONCLUSIONS: : Exposure of lung cancer cells to IR results in NFκB activation via IKK. The genetic or pharmacological blockage of the RAF1-ERK-IKK-NFκB pathway sensitizes cells to therapeutic doses of radiation. Therefore, the IKK pathway is a promising target for therapeutic intervention in combination with radiotherapy.

15.
In Vivo ; 31(2): 175-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358697

RESUMEN

BACKGROUND/AIM: Altered fractionation is an area of intense clinical research in radiation oncology. Estimation of the α/ß ratio of individual carcinomas after establishment of primary cell cultures from tumor biopsies may prove of importance in the individualization of radiotherapy schemes. MATERIALS AND METHODS: Here we proposed a simple method to estimate the α/ß ratio in cultured cell lines (two lung carcinomas: A549 and H1299; one lung fibroblast cell line: MRC5), using viability assays. RESULTS: For the A549 cell line, the α/ß ratio ranged from 14-25 Gy, for H1299 from 11-43 Gy and for the MRC5 fibroblast cell line this was far lower, ranging from 0.69 to 6 Gy. The α/ß ratio decreased when extracted from comparisons of lower dose per fraction schemes. CONCLUSION: The α/ß ratio of a cell line can be easily defined after simple viability/dose fractionation experiments.


Asunto(s)
Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Fibroblastos/efectos de la radiación , Células A549 , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Fibroblastos/citología , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Radioterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA