RESUMEN
The environmental bacterium Klebsiella oxytoca displays an alarming increase of antibiotic-resistant strains that frequently cause outbreaks in intensive care units. Due to its prevalence in the environment and opportunistic presence in humans, molecular surveillance (including resistance marker screening) and high-resolution cluster analysis are of high relevance. Furthermore, K. oxytoca previously described in studies is rather a species complex (KoSC) than a single species comprising at least six closely related species that are not easily differentiated by standard typing methods. To reach a discriminatory power high enough to identify and resolve clusters within these species, whole genome sequencing is necessary. The resolution is achievable with core genome multilocus sequence typing (cgMLST) extending typing of a few housekeeping genes to thousands of core genome genes. CgMLST is highly standardized and provides a nomenclature enabling cross laboratory reproducibility and data exchange for routine diagnostics. Here, we established a cgMLST scheme not only capable of resolving the KoSC species but also producing reliable and consistent results for published outbreaks. Our cgMLST scheme consists of 2,536 core genome and 2,693 accessory genome targets, with a percentage of good cgMLST targets of 98.31% in 880 KoSC genomes downloaded from the National Center for Biotechnology Information (NCBI). We also validated resistance markers against known resistance gene patterns and successfully linked genetic results to phenotypically confirmed toxic strains carrying the til gene cluster. In conclusion, our novel cgMLST enables highly reproducible typing of four different clinically relevant species of the KoSC and thus facilitates molecular surveillance and cluster investigations.
Asunto(s)
Genoma Bacteriano , Klebsiella oxytoca , Tipificación de Secuencias Multilocus , Tipificación de Secuencias Multilocus/métodos , Klebsiella oxytoca/genética , Klebsiella oxytoca/clasificación , Klebsiella oxytoca/aislamiento & purificación , Humanos , Genoma Bacteriano/genética , Filogenia , Infecciones por Klebsiella/microbiología , Secuenciación Completa del Genoma , Técnicas de Tipificación Bacteriana/métodos , Genes Esenciales/genética , Reproducibilidad de los ResultadosRESUMEN
Burkholderia mallei, the causative agent of glanders, is a clonal descendant of Burkholderia pseudomallei, the causative agent of melioidosis, which has lost its environmental reservoir and has a restricted host range. Despite limitations in terms of sensitivity and specificity, complement fixation is still the official diagnostic test for glanders. Therefore, new tools are needed for diagnostics and to study the B. mallei epidemiology. We recently developed a highly sensitive serodiagnostic microarray test for human melioidosis based on the multiplex detection of B. pseudomallei proteins. In this study, we modified our array tests by using anti-horse IgG conjugate and tested sera from B. mallei-infected horses (n = 30), negative controls (n = 39), and horses infected with other pathogens (n = 14). Our array results show a sensitivity of 96.7% (confidence interval [CI] 85.5 to 99.6%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The reactivity pattern of the positive sera on our array test allowed us to identify a set of 12 highly reactive proteins of interest for glanders diagnosis. The B. mallei variants of the three best protein candidates were selected for the development of a novel dipstick assay. Our point-of-care test detected glanders cases in less than 15 min with a sensitivity of 90.0% (CI, 75.7 to 97.1%) and a specificity of 100.0% (CI, 95.4 to 100.0%). The microarray and dipstick can easily be adopted for the diagnosis of both B. mallei and B. pseudomallei infections in different animals. Future studies will show whether multiplex serological testing has the potential to differentiate between these pathogens.
Asunto(s)
Burkholderia mallei , Burkholderia pseudomallei , Muermo , Melioidosis , Humanos , Caballos , Animales , Muermo/diagnóstico , Melioidosis/diagnóstico , Melioidosis/veterinaria , Análisis por Matrices de Proteínas , Burkholderia mallei/genéticaRESUMEN
Next-generation whole-genome sequencing is essential for high-resolution surveillance of bacterial pathogens, for example, during outbreak investigations or for source tracking and escape variant analysis. However, current global sequencing and bioinformatic bottlenecks and a long time to result with standard technologies demand new approaches. In this study, we investigated whether novel nanopore Q20+ long-read chemistry enables standardized and easily accessible high-resolution typing combined with core genome multilocus sequence typing (cgMLST). We set high requirements for discriminatory power by using the slowly evolving bacterium Bordetella pertussis as a model pathogen. Our results show that the increased raw read accuracy enables the description of epidemiological scenarios and phylogenetic linkages at the level of gold-standard short reads. The same was true for our variant analysis of vaccine antigens, resistance genes, and virulence factors, demonstrating that nanopore sequencing is a legitimate competitor in the area of next-generation sequencing (NGS)-based high-resolution bacterial typing. Furthermore, we evaluated the parameters for the fastest possible analysis of the data. By combining the optimized processing pipeline with real-time basecalling, we established a workflow that allows for highly accurate and extremely fast high-resolution typing of bacterial pathogens while sequencing is still in progress. Along with advantages such as low costs and portability, the approach suggested here might democratize modern bacterial typing, enabling more efficient infection control globally.
Asunto(s)
Bacterias , Genoma Bacteriano , Técnicas de Genotipaje , Tipificación de Secuencias Multilocus , Secuenciación de Nanoporos , Antígenos Bacterianos/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Vacunas Bacterianas/genética , Bordetella pertussis/genética , Bordetella pertussis/aislamiento & purificación , Bordetella pertussis/patogenicidad , Farmacorresistencia Bacteriana/genética , Monitoreo del Ambiente , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Tipificación de Secuencias Multilocus/métodos , Secuenciación de Nanoporos/métodos , Filogenia , Reproducibilidad de los Resultados , Factores de Virulencia/genéticaRESUMEN
Burkholderia pseudomallei causes the severe disease melioidosis. Whole-genome sequencing (WGS)-based typing methods currently offer the highest resolution for molecular investigations of this genetically diverse pathogen. Still, its routine application in diagnostic laboratories is limited by the need for high computing power, bioinformatic skills, and variable bioinformatic approaches, with the latter affecting the results. We therefore aimed to establish and validate a WGS-based core genome multilocus sequence typing (cgMLST) scheme, applicable in routine diagnostic settings. A soft defined core genome was obtained by challenging the B. pseudomallei reference genome K96243 with 469 environmental and clinical genomes, resulting in 4,221 core and 1,351 accessory targets. The scheme was validated with 320 WGS data sets. We compared our novel typing scheme with single nucleotide polymorphism-based approaches investigating closely and distantly related strains. Finally, we applied our scheme for tracking the environmental source of a recent infection. The validation of the scheme detected >95% good cgMLST target genes in 98.4% of the genomes. Comparison with existing typing methods revealed very good concordance. Our scheme proved to be applicable to investigating not only closely related strains but also the global B. pseudomallei population structure. We successfully utilized our scheme to identify a sugarcane field as the presumable source of a recent melioidosis case. In summary, we developed a robust cgMLST scheme that integrates high resolution, maximized standardization, and fast analysis for the nonbioinformatician. Our typing scheme has the potential to serve as a routinely applicable classification system in B. pseudomallei molecular epidemiology.
Asunto(s)
Burkholderia pseudomallei , Burkholderia pseudomallei/genética , Genoma Bacteriano/genética , Humanos , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Secuenciación Completa del GenomaRESUMEN
Introduction: The environmental bacterium Burkholderia pseudomallei causes the often fatal and massively underreported infectious disease melioidosis. Antigens inducing protective immunity in experimental models have recently been identified and serodiagnostic tools have been improved. However, further elucidation of the antigenic repertoire of B. pseudomallei during human infection for diagnostic and vaccine purposes is required. The adaptation of B. pseudomallei to very different habitats is reflected by a huge genome and a selective transcriptional response to a variety of conditions. We, therefore, hypothesized that exposure of B. pseudomallei to culture conditions mimicking habitats encountered in the human host might unravel novel antigens that are recognized by melioidosis patients. Methods and results: In this study, B. pseudomallei was exposed to various stress and growth conditions, including anaerobiosis, acid stress, oxidative stress, iron starvation and osmotic stress. Immunogenic proteins were identified by probing two-dimensional Western blots of B. pseudomallei intracellular and extracellular protein extracts with sera from melioidosis patients and controls and subsequent MALDI-TOF MS. Among B. pseudomallei specific immunogenic signals, 90 % (55/61) of extracellular immunogenic proteins were identified by acid, osmotic or oxidative stress. A total of 84 % (44/52) of intracellular antigens originated from the stationary growth phase, acidic, oxidative and anaerobic conditions. The majority of the extracellular and intracellular protein antigens were identified in only one of the various stress conditions. Sixty-three immunoreactive proteins and an additional 38 candidates from a literature screening were heterologously expressed and subjected to dot blot analysis using melioidosis sera and controls. Our experiments confirmed melioidosis-specific signals in 58 of our immunoproteome candidates. These include 15 antigens with average signal ratios (melioidosis:controls) greater than 10 and another 26 with average ratios greater than 5, including new promising serodiagnostic candidates with a very high signal-to-noise ratio. Conclusion: Our study shows that a comprehensive B. pseudomallei immunoproteomics approach, using conditions which are likely to be encountered during infection, can identify novel antibody targets previously unrecognized in human melioidosis.
Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Formación de Anticuerpos , Antígenos Bacterianos , InmunoglobulinasRESUMEN
Rapid molecular surveillance of SARS-CoV-2 S-protein variants leading to immune escape and/or increased infectivity is of utmost importance. Among global bottlenecks for variant monitoring in diagnostic settings are sequencing and bioinformatics capacities. In this study, we aimed to establish a rapid and user-friendly protocol for high-throughput S-gene sequencing and subsequent automated identification of variants. We designed two new primer pairs to amplify only the immunodominant part of the S-gene for nanopore sequencing. Furthermore, we developed an automated "S-Protein-Typer" tool that analyzes and reports S-protein mutations on the amino acid level including a variant of concern indicator. Validation of our primer panel using SARS-CoV-2-positive respiratory specimens covering a broad Ct range showed successful amplification for 29/30 samples. Restriction to the region of interest freed sequencing capacity by a factor of 12-13, compared with whole-genome sequencing. Using either the MinION or Flongle flow cell, our sequencing strategy reduced the time required to identify SARS-CoV-2 variants accordingly. The S-Protein-Typer tool identified all mutations correctly when challenged with our sequenced samples and 50 deposited sequences covering all VOCs (December 2021). Our proposed S-protein variant screening offers a simple, more rapid, and low-cost entry into NGS-based SARS-CoV-2 analysis, compared with current whole-genome approaches.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nanoporos/métodos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/epidemiología , COVID-19/virología , Monitoreo Epidemiológico , Genotipo , Humanos , Evasión Inmune/genética , Mutación , SARS-CoV-2/inmunologíaRESUMEN
BACKGROUND: Melioidosis, caused by Burkholderia pseudomallei, is a severe infectious disease with high mortality rates, but is under-recognized worldwide. In endemic areas, there is a great need for simple, low-cost and rapid diagnostic tools. In a previous study we showed, that a protein multiplex array with 20 B. pseudomallei-specific antigens detects antibodies in melioidosis patients with high sensitivity and specificity. In a subsequent study the high potential of anti-B. pseudomallei antibody detection was confirmed using a rapid Hcp1 single protein-based assay. Our protein array also showed that the antibody profile varies between patients, possibly due to a combination of host factors but also antigen variations in the infecting B. pseudomallei strains. The aim of this study was to develop a rapid test, combining Hcp1 and the best performing antigens BPSL2096, BPSL2697 and BPSS0477 from our previous study, to take advantage of simultaneous antibody detection. METHODS AND PRINCIPAL FINDINGS: The 4-plex dipstick was validated with sera from 75 patients on admission plus control groups, achieving 92% sensitivity and 97-100% specificity. We then re-evaluated melioidosis sera with the 4-plex assay that were previously misclassified by the monoplex Hcp1 rapid test. 12 out of 55 (21.8%) false-negative samples were positive in our new dipstick assay. Among those, 4 sera (7.3%) were Hcp1 positive, whereas 8 (14.5%) sera remained Hcp1 negative but gave a positive reaction with our additional antigens. CONCLUSIONS: Our dipstick rapid test represents an inexpensive, standardized and simple diagnostic tool with an improved serodiagnostic performance due to multiplex detection. Each additional band on the test strip makes a false-positive result more unlikely, contributing to its reliability. Future prospective studies will seek to validate the gain in sensitivity and specificity of our multiplex rapid test approach in different melioidosis patient cohorts.
Asunto(s)
Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/sangre , Melioidosis/diagnóstico , Tiras Reactivas , Pruebas Serológicas/métodos , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos , Proteínas Bacterianas , Burkholderia pseudomallei/genética , Humanos , Melioidosis/microbiología , Sensibilidad y EspecificidadRESUMEN
Antibiotic resistant bacteria (ARB) in the aquatic environment are reported from all over the world and their presence in the environment has become quite common. The current most prominent example is the presence of beta-lactamases harboring Enterobacteriaceae. The aim of this study was to investigate the presence and diversity (on the genetic and phenotypic levels) of extended spectrum beta-lactamases (ESBL) and carbapenemases harboring Enterobacteriaceae from the River Mur in the center of Graz, Austria's second largest city. Thus over a period of four months water samples were taken, filtrated and screened for these bacteria. All samples revealed ESBL harboring Enterobacteriaceae, of which all with only one exception were Escherichia coli. Dominant ESBL gene family was CTX-M, represented by subgroups CTX-M-1 group, CTX-M-2 group and CTX-M-9 group. Surprisingly co-resistances to non-beta-lactam antibiotics were low, only resistance to trimethoprim was detected in 50% of all (70) isolates. One Klebsiella oxytoca with GES-1 was isolated. To date, GES ESBL has never been reported from Austria before and only rarely from other European countries. Screening for carbapenemase harboring Enterobacteriaceae revealed one Enterobacter cloacae with the gene for VIM-1. Members sharing the same multi-locus-sequence-type (MLST) as well as members of the same rep PCR clusters occurred at different sampling time points. ESBL-harboring Enterobacteriaceae are common in Austrian river water, is dominated by Escherichia coli and CTX-M enzymes. Furthermore, some of the isolates could be linked to different origins.
Asunto(s)
Escherichia coli/aislamiento & purificación , Ríos/microbiología , Microbiología del Agua , beta-Lactamasas/genética , Austria , Farmacorresistencia Bacteriana , Escherichia coli/enzimología , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias MultilocusRESUMEN
Acinetobacter spp. occur naturally in many different habitats, including food, soil, and surface waters. In clinical settings, Acinetobacter poses an increasing health problem, causing infections with limited to no antibiotic therapeutic options left. The presence of human generated multidrug resistant strains is well documented but the extent to how widely they are distributed within the Acinetobacter population is unknown. In this study, Acinetobacter spp. were isolated from water samples at 14 sites of the whole course of the river Danube. Susceptibility testing was carried out for 14 clinically relevant antibiotics from six different antibiotic classes. Isolates showing a carbapenem resistance phenotype were screened with PCR and sequencing for the underlying resistance mechanism of carbapenem resistance. From the Danube river water, 262 Acinetobacter were isolated, the most common species was Acinetobacter baumannii with 135 isolates. Carbapenem and multiresistant isolates were rare but one isolate could be found which was only susceptible to colistin. The genetic background of carbapenem resistance was mostly based on typical Acinetobacter OXA enzymes but also on VIM-2. The population of Acinetobacter (baumannii and non-baumannii) revealed a significant proportion of human-generated antibiotic resistance and multiresistance, but the majority of the isolates stayed susceptible to most of the tested antibiotics.
Asunto(s)
Acinetobacter/fisiología , Antibacterianos , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Ríos/microbiología , Acinetobacter/aislamiento & purificación , Acinetobacter baumannii , Colistina , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , beta-Lactamasas/genéticaRESUMEN
In a clinical setting it seems to be normal these days that a relevant proportion or even the majority of different bacterial species has already one or more acquired antibiotic resistances. Unfortunately, the overuse of antibiotics for livestock breeding and medicine has also altered the wild-type resistance profiles of many bacterial species in different environmental settings. As a matter of fact, getting in contact with resistant bacteria is no longer restricted to hospitals. Beside food and food production, the aquatic environment might also play an important role as reservoir and carrier. The aim of this study was the assessment of the resistance patterns of Escherichia coli and Klebsiella spp. out of surface water without prior enrichment and under non-selective culture conditions (for antibiotic resistance). In addition, the presence of clinically important extended spectrum beta lactamase (ESBL) and carbapenmase harboring Enterobacteriaceae should be investigated. During Joint Danube Survey 3 (2013), water samples were taken over the total course of the River Danube. Resistance testing was performed for 21 different antibiotics. Samples were additionally screened for ESBL or carbapenmase harboring Enterobacteriaceae. 39% of all isolated Escherichia coli and 15% of all Klebsiella spp. from the river Danube had at least one acquired resistance. Resistance was found against all tested antibiotics except tigecycline. Taking a look on the whole stretch of the River Danube the proportion of multiresistances did not differ significantly. In total, 35 ESBL harboring Enterobacteriaceae, 17 Escherichia coli, 13 Klebsiella pneumoniae and five Enterobacter spp. were isolated. One Klebsiella pneumoniae harboring NMD-1 carbapenmases and two Enterobacteriaceae with KPC-2 could be identified. Human generated antibiotic resistance is very common in E. coli and Klebsiella spp. in the River Danube. Even isolates with resistance patterns normally associated with intensive care units are present.
Asunto(s)
Proteínas Bacterianas/metabolismo , Farmacorresistencia Microbiana , Enterobacteriaceae/enzimología , Enterobacteriaceae/aislamiento & purificación , Ríos/microbiología , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Microbiana/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Europa (Continente) , beta-Lactamasas/genéticaRESUMEN
Spread and persistence of antibiotic resistance pose a severe threat to human health, yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3), the world's biggest river research expedition of its kind in 2013, to analyse samples originating from different sampling points along the whole length of the river. Due to its high clinical relevance, we concentrated on the characterization of Pseudomonas spp. and evaluated the resistance profiles of Pseudomonas spp. which were isolated from eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%) isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas fluorescens, all other Pseudomonas species were represented by less than five isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all isolated Pseudomonas species showed resistance to at least one out of 10 tested antibiotics. The most common resistance was against meropenem (30.4%/158 isolates) piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16 isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one resistant isolate could be detected. Sampling points from the upper stretch of the River Danube showed more resistant isolates than downriver. Our results suggest that antibiotic resistance can be acquired by and persists even in Pseudomonas species that are normally not in direct contact with humans. A possible scenario is that these bacteria provide a reservoir of antibiotic resistance genes that can spread to related human pathogens by horizontal gene transfer.