Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.071
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730854

RESUMEN

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Asunto(s)
Conducta Alimentaria/fisiología , Fenómenos Genéticos , Células Receptoras Sensoriales/fisiología , Nervio Vago/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Encéfalo/fisiología , Tracto Gastrointestinal/inervación , Marcadores Genéticos , Mecanorreceptores/metabolismo , Ratones , Nervio Vago/anatomía & histología , Vísceras/inervación
2.
Nature ; 614(7949): 752-761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599369

RESUMEN

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Asunto(s)
COVID-19 , Inmunidad Innata , Memoria Inmunológica , Vacunas contra la Influenza , Caracteres Sexuales , Linfocitos T , Vacunación , Femenino , Humanos , Masculino , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Interleucina-15/inmunología , Receptores Toll-Like/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Monocitos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Análisis de la Célula Individual , Voluntarios Sanos
3.
Nature ; 616(7958): 755-763, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046083

RESUMEN

Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.


Asunto(s)
Hematopoyesis Clonal , Células Madre Hematopoyéticas , Animales , Humanos , Ratones , Alelos , Hematopoyesis Clonal/genética , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Regiones Promotoras Genéticas
4.
Immunol Rev ; 322(1): 311-328, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306168

RESUMEN

Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.


Asunto(s)
Enfermedades del Sistema Inmune , Inhibidores de las Cinasas Janus , Humanos , Transducción de Señal , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo
5.
Development ; 151(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38602485

RESUMEN

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Asunto(s)
Diferenciación Celular , Vía de Señalización Hippo , Morfogénesis , Miofibroblastos , Proteínas Serina-Treonina Quinasas , Alveolos Pulmonares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/citología , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Morfogénesis/genética , Mesodermo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Pulmón/metabolismo , Organogénesis/genética , Regulación del Desarrollo de la Expresión Génica
6.
PLoS Biol ; 22(6): e3002651, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889194

RESUMEN

Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.


Asunto(s)
Estimulación Acústica , Ritmo alfa , Electroencefalografía , Humanos , Estimulación Acústica/métodos , Masculino , Adulto , Ritmo alfa/fisiología , Electroencefalografía/métodos , Femenino , Adulto Joven , Sueño/fisiología , Encéfalo/fisiología
7.
Proc Natl Acad Sci U S A ; 121(15): e2313004121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564631

RESUMEN

Polyphosphate (polyP) synthesis is a ubiquitous stress and starvation response in bacteria. In diverse species, mutants unable to make polyP have a wide variety of physiological defects, but the mechanisms by which this simple polyanion exerts its effects remain unclear. One possibility is that polyP's many functions stem from global effects on the biophysical properties of the cell. We characterize the effect of polyphosphate on cytoplasmic mobility under nitrogen-starvation conditions in the opportunistic pathogen Pseudomonas aeruginosa. Using fluorescence microscopy and particle tracking, we quantify the motion of chromosomal loci and cytoplasmic tracer particles. In the absence of polyP and upon starvation, we observe a 2- to 10-fold increase in mean cytoplasmic diffusivity. Tracer particles reveal that polyP also modulates the partitioning between a "more mobile" and a "less mobile" population: Small particles in cells unable to make polyP are more likely to be "mobile" and explore more of the cytoplasm, particularly during starvation. Concomitant with this larger freedom of motion in polyP-deficient cells, we observe decompaction of the nucleoid and an increase in the steady-state concentration of ATP. The dramatic polyP-dependent effects we observe on cytoplasmic transport properties occur under nitrogen starvation, but not carbon starvation, suggesting that polyP may have distinct functions under different types of starvation.


Asunto(s)
Polifosfatos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Polifosfatos/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo
8.
Hum Mol Genet ; 33(16): 1429-1441, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38747556

RESUMEN

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.


Asunto(s)
Biomarcadores , Estudio de Asociación del Genoma Completo , Inflamación , Medicina de Precisión , Secuenciación Completa del Genoma , Humanos , Medicina de Precisión/métodos , Inflamación/genética , Estudio de Asociación del Genoma Completo/métodos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Predisposición Genética a la Enfermedad , Femenino , Interleucina-6/genética
9.
Am J Hum Genet ; 110(2): 273-283, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649705

RESUMEN

This study sought to examine the association between DNA methylation and body mass index (BMI) and the potential of BMI-associated cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n = 17,034), replicated these findings in the Women's Health Initiative (WHI, n = 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG sites were associated with BMI (p < 1E-7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685 CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Femenino , Índice de Masa Corporal , Epigénesis Genética/genética , Obesidad/genética , HDL-Colesterol/genética , Estudio de Asociación del Genoma Completo , Metilación de ADN/genética , Epigenómica , Triglicéridos , Islas de CpG/genética
10.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38320121

RESUMEN

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Asunto(s)
Moléculas de Adhesión Celular , Factor VIII , Quininógenos , Lectinas Tipo C , Receptores de Superficie Celular , Factor de von Willebrand , Humanos , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Polimorfismo de Nucleótido Simple , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Trombosis/genética , Trombosis/sangre , Estudios de Asociación Genética , Masculino , Células Endoteliales/metabolismo , Femenino
11.
Blood ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226462

RESUMEN

Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.

12.
Trends Immunol ; 44(11): 902-916, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37813732

RESUMEN

Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.


Asunto(s)
Autoinmunidad , Hipersensibilidad , Humanos , Autoinmunidad/genética , Epigénesis Genética , Epigenómica , Mutación/genética
13.
Nature ; 582(7810): 109-114, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494068

RESUMEN

Advances in genetics and sequencing have identified a plethora of disease-associated and disease-causing genetic alterations. To determine causality between genetics and disease, accurate models for molecular dissection are required; however, the rapid expansion of transcriptional populations identified through single-cell analyses presents a major challenge for accurate comparisons between mutant and wild-type cells. Here we generate mouse models of human severe congenital neutropenia (SCN) using patient-derived mutations in the GFI1 transcription factor. To determine the effects of SCN mutations, we generated single-cell references for granulopoietic genomic states with linked epitopes1, aligned mutant cells to their wild-type equivalents and identified differentially expressed genes and epigenetic loci. We find that GFI1-target genes are altered sequentially, as cells go through successive states of differentiation. These insights facilitated the genetic rescue of granulocytic specification but not post-commitment defects in innate immune effector function, and underscore the importance of evaluating the effects of mutations and therapy within each relevant cell state.


Asunto(s)
Modelos Animales de Enfermedad , Células Precursoras de Granulocitos/patología , Mutación , Neutropenia/genética , Neutropenia/patología , Neutrófilos/patología , Animales , Candida albicans/inmunología , Candida albicans/patogenicidad , Linaje de la Célula , Proteínas de Unión al ADN/genética , Femenino , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Transgénicos , Neutropenia/congénito , Neutropenia/inmunología , Neutrófilos/inmunología , Factores de Transcripción/genética
14.
Proc Natl Acad Sci U S A ; 120(2): e2207046120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36603029

RESUMEN

Recent research identifies and corrects bias, such as excess dispersion, in the leading sample eigenvector of a factor-based covariance matrix estimated from a high-dimension low sample size (HL) data set. We show that eigenvector bias can have a substantial impact on variance-minimizing optimization in the HL regime, while bias in estimated eigenvalues may have little effect. We describe a data-driven eigenvector shrinkage estimator in the HL regime called "James-Stein for eigenvectors" (JSE) and its close relationship with the James-Stein (JS) estimator for a collection of averages. We show, both theoretically and with numerical experiments, that, for certain variance-minimizing problems of practical importance, efforts to correct eigenvalues have little value in comparison to the JSE correction of the leading eigenvector. When certain extra information is present, JSE is a consistent estimator of the leading eigenvector.


Asunto(s)
Sesgo , Tamaño de la Muestra
15.
PLoS Genet ; 19(7): e1010669, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428814

RESUMEN

Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression. Here, we systematically analyzed the transcriptional and translational regulation of ROS defense genes by RNA-sequencing, qRT-PCR, translational reporter gene fusions, enzymatic RNA structure probing and toeprinting assays. Transcription of four ROS defense genes was upregulated at 37°C. The trxA gene is transcribed into two mRNA isoforms, of which the most abundant short one contains a functional RNAT. Biochemical assays validated temperature-responsive RNAT-like structures in the 5'-UTRs of sodB, sodC and katA. However, they barely conferred translational repression in Y. pseudotuberculosis at 25°C suggesting partially open structures available to the ribosome in the living cell. Around the translation initiation region of katY we discovered a novel, highly efficient RNAT that was primarily responsible for massive induction of KatY at 37°C. By phenotypic characterization of catalase mutants and through fluorometric real-time measurements of the redox-sensitive roGFP2-Orp1 reporter in these strains, we revealed KatA as the primary H2O2 scavenger. Consistent with the upregulation of katY, we observed an improved protection of Y. pseudotuberculosis at 37°C. Our findings suggest a multilayered regulation of the oxidative stress response in Yersinia and an important role of RNAT-controlled katY expression at host body temperature.


Asunto(s)
Yersinia pseudotuberculosis , Animales , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Temperatura , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , ARN/metabolismo , Estrés Oxidativo/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mamíferos/genética
16.
Genes Dev ; 32(11-12): 849-864, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29907650

RESUMEN

Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.


Asunto(s)
Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Mutación , Nitrilos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas , Interferencia de ARN , Receptores de Citocinas/genética , Transcriptoma , Triazoles/farmacología
17.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36444934

RESUMEN

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Insuficiencia Renal Crónica , Humanos , Aminopeptidasas , Nefropatías Diabéticas/genética , Secuenciación del Exoma , Riñón , Insuficiencia Renal Crónica/genética
18.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239312

RESUMEN

There is a growing amount of data uncovering the cellular diversity of the pulmonary circulation and mechanisms governing vascular repair after injury. However, the molecular and cellular mechanisms contributing to the morphogenesis and growth of the pulmonary vasculature during embryonic development are less clear. Importantly, deficits in vascular development lead to significant pediatric lung diseases, indicating a need to uncover fetal programs promoting vascular growth. To address this, we used a transgenic mouse reporter for expression of Cxcl12, an arterial endothelial hallmark gene, and performed single-cell RNA sequencing on isolated Cxcl12-DsRed+ endothelium to assess cellular heterogeneity within pulmonary endothelium. Combining cell annotation with gene ontology and histological analysis allowed us to segregate the developing artery endothelium into functionally and spatially distinct subpopulations. Expression of Cxcl12 is highest in the distal arterial endothelial subpopulation, a compartment enriched in genes for vascular development. Accordingly, disruption of CXCL12 signaling led to, not only abnormal branching, but also distal vascular hypoplasia. These data provide evidence for arterial endothelial functional heterogeneity and reveal conserved signaling mechanisms essential for pulmonary vascular development.


Asunto(s)
Endotelio Vascular , Pulmón , Ratones , Embarazo , Animales , Femenino , Endotelio Vascular/metabolismo , Morfogénesis , Ratones Transgénicos , Desarrollo Embrionario
19.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174935

RESUMEN

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Asunto(s)
Hepacivirus , Hepatitis C , Evasión Inmune , Lipoproteínas HDL , Proteínas del Envoltorio Viral , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidad , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos contra la Hepatitis C/inmunología , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Células HEK293
20.
Blood ; 142(24): 2105-2118, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37562003

RESUMEN

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections and inflammatory conditions. Hematopoietic cell transplantation (HCT) is the definitive treatment for CGD, but questions remain regarding patient selection and impact of active disease on transplant outcomes. We performed a multi-institutional retrospective and prospective study of 391 patients with CGD treated either conventionally (non-HCT) enrolled from 2004 to 2018 or with HCT from 1996 to 2018. Median follow-up after HCT was 3.7 years with a 3-year overall survival of 82% and event-free survival of 69%. In a multivariate analysis, a Lansky/Karnofsky score <90 and use of HLA-mismatched donors negatively affected survival. Age, genotype, and oxidase status did not affect outcomes. Before HCT, patients had higher infection density, higher frequency of noninfectious lung and liver diseases, and more steroid use than conventionally treated patients; however, these issues did not adversely affect HCT survival. Presence of pre-HCT inflammatory conditions was associated with chronic graft-versus-host disease. Graft failure or receipt of a second HCT occurred in 17.6% of the patients and was associated with melphalan-based conditioning and/or early mixed chimerism. At 3 to 5 years after HCT, patients had improved growth and nutrition, resolved infections and inflammatory disease, and lower rates of antimicrobial prophylaxis or corticosteroid use compared with both their baseline and those of conventionally treated patients. HCT leads to durable resolution of CGD symptoms and lowers the burden of the disease. Patients with active infection or inflammation are candidates for transplants; HCT should be considered before the development of comorbidities that could affect performance status. This trial was registered at www.clinicaltrials.gov as #NCT02082353.


Asunto(s)
Enfermedad Injerto contra Huésped , Enfermedad Granulomatosa Crónica , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/terapia , Estudios Retrospectivos , Estudios Prospectivos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Genotipo , Acondicionamiento Pretrasplante/efectos adversos , Enfermedad Injerto contra Huésped/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA