Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 19(52): e2304387, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37643398

RESUMEN

Ferromagnetic ferrofluids are synthetic materials consisting of magnetic nanoplatelets dispersed in an isotropic fluid. Their main characteristics are the formation of stable magnetic domains and the presence of macroscopic magnetization even in the absence of a magnetic field. Here, the authors report on the experimental observation of spontaneous stripe formation in a ferromagnetic ferrofluid in the presence of an oscillating external magnetic field. The striped structure is identified as elongated magnetic domains, which exhibit reorientation upon reversal of the magnetic field. The stripes are oriented perpendicular to the magnetic field and are separated by alternating flow lanes. The velocity profile is measured using a space-time correlation technique that follows the motion of the thermally excited fluctuations in the sample. The highest velocities are found in the depleted regions between individual domains and reach values up to several µm s-1 . The fluid in adjacent lanes moves in the opposite directions despite the applied magnetic field being uniform. The formation of bidirectional flow lanes can be explained by alternating rotation of magnetic nanoparticles in neighboring stripes, which indicates spontaneous breaking of the chiral symmetry in the sample.

2.
Opt Lett ; 47(18): 4696-4699, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107066

RESUMEN

This Letter describes a miniature Fabry-Perot, contactless, magneto-optic sensor for angular position measurement. The sensor utilizes a magneto-optic fluid comprising barium hexaferrite nanoplatelets that become birefringent in the presence of an external magnetic field and a compact fiber-optic sensor system for tracking the liquid's optical axis direction. An efficient temperature compensation system is provided which allows the use of otherwise highly temperature-sensitive magneto-optic liquids. An unambiguous measurement range of 90° and a resolution of better than 0.05° are demonstrated experimentally.

3.
Opt Express ; 27(17): 24426-24433, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510331

RESUMEN

This paper first reports random laser action in dye-doped ferromagnetic nematic liquid crystals, which act as a randomly distributed cavity. The random laser intensity of the ferromagnetic nematic liquid crystals can be controlled by a weak magnetic field (∼1 mT). Moreover, the magnetic switching of random laser is attributed to the direction and polarization dependent emission of light in the ferromagnetic nematic liquid crystals in an external magnetic field.

4.
Soft Matter ; 15(43): 8758-8765, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31588945

RESUMEN

A comparative experimental investigation of the dependence of second harmonic generation (SHG) on an applied external voltage between a standard nematic liquid crystalline material and an analogue ferromagnetic nematic liquid crystalline material was performed by using a fundamental optical beam at an 800 nm wavelength. For the ferromagnetic material, the dependence of SHG on an applied magnetic field was also examined. Three different polarization combinations of the fundamental and the second harmonic radiation were analysed. The SHG signal observed in the former material is attributed to a combination of electric field-induced SHG (EFISHG) and flexoelectric deformation-induced SHG, while the SHG signal observed in the latter material is attributed solely to flexoelectric deformation-induced SHG. The obtained dependences of the SHG signal on the associated optical retardation show that, in the most favourable polarization combination, the two contributions generate about the same effective nonlinear optical susceptibility.

5.
Soft Matter ; 15(27): 5412-5420, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241639

RESUMEN

Suspensions of magnetic nanoplatelets in isotropic solvents are very interesting examples of ferrofluids. It has been shown that above a certain concentration ΦNI such suspensions form a ferromagnetic nematic phase, which makes this system a unique example of a dipolar fluid. The formation of a nematic phase is driven by anisotropic electrostatic and long-range dipolar magnetic interactions. Here, we present studies of the evolution of short range positional and orientational magnetic order in suspensions with volume fractions below and above ΦNI, using small angle neutron scattering (SANS). The results show that in the absence of an external magnetic field, short range positional and orientational order already exist at relatively low volume fractions. Polarized SANS revealed that the contribution of ferromagnetic ordering to the formation of the nematic phase is significant. The ferromagnetic correlations can be qualitatively explained by a simple model, which takes into account anisotropic screened electrostatic and dipolar magnetic interactions.


Asunto(s)
Nanopartículas de Magnetita/química , Simulación por Computador , Campos Magnéticos , Fenómenos Magnéticos , Imanes/química , Tamaño de la Partícula
6.
Nature ; 504(7479): 237-41, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24336284

RESUMEN

More than four decades ago, Brochard and de Gennes proposed that colloidal suspensions of ferromagnetic particles in nematic (directionally ordered) liquid crystals could form macroscopic ferromagnetic phases at room temperature. The experimental realization of these predicted phases has hitherto proved elusive, with such systems showing enhanced paramagnetism but no spontaneous magnetization in the absence of an external magnetic field. Here we show that nanometre-sized ferromagnetic platelets suspended in a nematic liquid crystal can order ferromagnetically on quenching from the isotropic phase. Cooling in the absence of a magnetic field produces a polydomain sample exhibiting the two opposing states of magnetization, oriented parallel to the direction of nematic ordering. Cooling in the presence of a magnetic field yields a monodomain sample; magnetization can be switched by domain wall movement on reversal of the applied magnetic field. The ferromagnetic properties of this dipolar fluid are due to the interplay of the nematic elastic interaction (which depends critically on the shape of the particles) and the magnetic dipolar interaction. This ferromagnetic phase responds to very small magnetic fields and may find use in magneto-optic devices.

7.
Soft Matter ; 14(35): 7180-7189, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30141811

RESUMEN

Successful realization of ferromagnetic nematic liquid crystals has opened up the possibility to experimentally study a completely new set of fundamental physical phenomena. In this contribution we present a detailed investigation of some aspects of the static response and the complex dynamics of ferromagnetic liquid crystals under the application of an external magnetic field. Experimental results are then compared with a macroscopic model. Dynamics of the director were measured by optical methods and analyzed in terms of a theoretical macroscopic model. A dissipative cross-coupling coefficient describing the dynamic coupling between the two system order parameters, the magnetization and the nematic director, is needed to explain the results. In this contribution we examine the dependency of this coefficient on material parameters and the saturation magnetization and the liquid crystal host. Despite the complexity of the system, the theoretical description allows for a proper interpretation of the results and is connected to several microscopic aspects of the colloidal suspension.

8.
Opt Express ; 25(2): 1073-1083, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28157988

RESUMEN

We report magnetic field tuning of the structure and Whispering Gallery Mode lasing from ferromagnetic nematic liquid crystal micro-droplets. Microlasers were prepared by dispersing a nematic liquid crystal, containing magnetic nanoparticles and fluorescent dye, in a glycerol-lecithin matrix. The droplets exhibit radial director structure, which shows elastic distortion at a very low external magnetic field. The fluorescent dye doped ferromagnetic nematic droplets show Whispering Gallery Mode lasing, which is tunable by the external magnetic field. The tuning of the WGM lasing modes is linear in magnetic field with a wavelength-shift of the order of 1 nm/100 mT. Depending on the lasing geometry, the WGMs are red- or blue-shifted.

9.
Phys Rev Lett ; 119(9): 097802, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949588

RESUMEN

Hydrodynamics of complex fluids with multiple order parameters is governed by a set of dynamic equations with many material constants, of which only some are easily measurable. We present a unique example of a dynamic magneto-optic coupling in a ferromagnetic nematic liquid, in which long-range orientational order of liquid crystalline molecules is accompanied by long-range magnetic order of magnetic nanoplatelets. We investigate the dynamics of the magneto-optic response experimentally and theoretically and find out that it is significantly affected by the dissipative dynamic cross-coupling between the nematic and magnetic order parameters. The cross-coupling coefficient determined by fitting the experimental results with a macroscopic theory is of the same order of magnitude as the dissipative coefficient (rotational viscosity) that governs the reorientation of pure liquid crystals.

10.
Langmuir ; 33(2): 553-560, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27992232

RESUMEN

In a proof-of-concept study, we assessed different analytical and spectroscopic parameters for stability screening of differently sized ß-NaYF4:20 mol % Yb3+, 2 mol % Tm3+ upconversion nanoparticles (UCNPs) exemplarily in the bioanalytically relevant buffer phosphate buffered saline (PBS; pH 7.4) at 37 and 50 °C. This included the potentiometric determination of the amount of released fluoride ions, surface analysis with X-ray photoelectron spectroscopy (XPS), and steady-state and time-resolved fluorescence measurements. Based on these results, the luminescence lifetime of the 800 nm upconversion emission was identified as an optimum parameter for stability screening of UCNPs and changes in particle surface chemistry.

11.
Langmuir ; 32(32): 8222-9, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27459496

RESUMEN

The dissolution of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles (UCNPs) in aqueous media was systematically studied. UCNPs with a cubic structure and sizes of between 10 and 33 nm were synthesized solvothermally in ethylene glycol at 200 °C. The UCNPs of both compositions showed an upconversion fluorescence emission characteristic of Tm(3+). The effects of the A cation, the particle size, the temperature, the pH, and the composition of the aqueous medium on the dissolution of the UCNPs were evaluated. The degree of dissolution was determined from the fraction of dissolved fluoride (F(-)) using potentiometry. Unexpectedly, the composition of aqueous media had the most significant effect on the dissolution of the UCNPs. The highest degree of dissolution and rate were measured for the phosphate-buffered saline (PBS), which can be explained by the formation of stable lanthanide compounds with phosphates. The degree of dissolution was much lower in water and in the phthalate buffer, which was attributed to the release of F(-) as a result of the hydrolysis of the UCNPs' surfaces.

12.
Langmuir ; 30(22): 6588-95, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24841592

RESUMEN

The effect of the morphology of ferrite nanoparticles on their assembly in a magnetic field was studied. Thin BaFe12O19 nanoplatelets were compared with isotropic, spherical or octahedral, CoFe2O4 nanoparticles, all of which were synthesized hydrothermally. The nanoplatelets and nanoparticles assembled into a variety of hierarchical structures from stable suspensions during the "drop deposition" and drying in a magnetic field. The alignment of the nanoparticles in the magnetic field was observed in situ with an optical microscope. The morphologies of the nanoparticles and the subsequent assemblies were observed with transmission and scanning electron microscopes, respectively. The magnetic properties of the nanoparticles and the assemblies were measured with a vibrating-sample magnetometer. The BaFe12O19 nanoplatelets aligned in the plane of the substrate and formed several-micrometers-thick, ordered films with a magnetic alignment of approximately 90%. The CoFe2O4 nanoparticles assembled into thick, dense columns with a height of several hundreds of micrometers and showed a magnetic alignment of up to 60%. The differences in the morphologies and the magnetic alignments between the BaFe12O19 and CoFe2O4 hierarchical structures could be explained in terms of the differences in the shape and magnetocrystalline structure of the specific nanoparticles.


Asunto(s)
Compuestos Férricos/química , Campos Magnéticos , Nanopartículas/química , Microscopía Electrónica
13.
Soft Matter ; 10(45): 9065-72, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25244107

RESUMEN

We have studied the response of ferromagnetic liquid crystals to external magnetic and electric fields, and compared it to the usual response of nematic liquid crystals (NLCs). We have observed effects, which are not present in a pure NLC and are a consequence of the coupling between the nematic director and the magnetization. The electro-optic effect, which is in the ferromagnetic phase the same as in the pure NLC, is accompanied by a converse magnetoelectric effect. The magneto-optic effect differs completely from the one observed in the pure NLC, where it is a quadratic effect and it only appears when a magnetic field larger than a critical field is applied perpendicular to the director. In the ferromagnetic NLC in addition to the response to the perpendicular field, there is also a qualitatively different response to the parallel field. Contrary to the pure NLC no critical field needs to be exceeded for the system to respond to a perpendicular field, but a critical field needs to be exceeded to observe a response to the field parallel to the director and antiparallel to the magnetization. The critical field is in this case two orders of magnitude smaller than the critical field of the magnetic Frederiks transition in the pure NLC. The experimental observations are well described by a simple macroscopic theory.

14.
Colloids Surf B Biointerfaces ; 224: 113198, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36773411

RESUMEN

Colloidal stabilization of magnetic nanoparticles is one of the most important steps in the preparation of magnetic nanoparticles for potential biomedical applications. A special kind of magnetic nanoparticle are barium hexaferrite nanoplatelets (BSHF NPLs) with a hexagonal shape and a permanent magnetic moment. One strategy for the stabilization of BHF in aqueous media is to use coatings. In our research, we used an eco-friendly tannic acid, as a coating on BSHF NPLs. As-prepared BSHF NPLs coated with tannic acid were examined with transmission electron microscopy, infrared and UV-Vis spectroscopy, electro-kinetic measurements, and their room-temperature magnetic properties were measured. Stable colloids were tested in two biological complex media and antimicrobial properties of the material were examined. To enhance the antimicrobial properties of our material, we used tannic acid as a platform for the in-situ production of silver on BSHF NPLs. New hybrid material with silver also possesses magnetic properties and excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/química , Polifenoles , Plata/química , Antiinfecciosos/farmacología , Taninos/farmacología , Coloides/química , Fenómenos Magnéticos , Nanopartículas del Metal/química
15.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37368252

RESUMEN

In this study, MNPs were functionalized with pyrocatechol (CAT), pyrogallol (GAL), caffeic acid (CAF), and nitrodopamine (NDA) at pH 8 and pH 11. The functionalization of the MNPs was successful, except in the case of NDA at pH 11. The thermogravimetric analyses indicated that the surface concentration of the catechols was between 1.5 and 3.6 molecules/nm2. The saturation magnetizations (Ms) of the functionalized MNPs were higher than the starting material. XPS analyses showed only the presence of Fe(III) ions on the surface, thus refuting the idea of the Fe being reduced and magnetite being formed on the surfaces of the MNPs. Density functional theory (DFT) calculations were performed for two modes of adsorption of CAT onto two model surfaces: plain and adsorption via condensation. The total magnetization of both adsorption modes remained the same, indicating that the adsorption of the catechols does not affect the Ms. The analyses of the size and the size distribution showed an increase in the average size of the MNPs during the functionalization process. This increase in the average size of the MNPs and the reduction in the fraction of the smallest (i.e., <10 nm) MNPs explained the increase in the Ms values.

16.
Sci Rep ; 13(1): 1092, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658162

RESUMEN

Barium hexaferrite nanoplatelets (BHF NPLs) are permanent nanomagnets with the magnetic easy axis aligned perpendicular to their basal plane. By combining this specific property with optimised surface chemistry, novel functional materials were developed, e.g., ferromagnetic ferrofluids and porous nanomagnets. We compared the interaction of chemically different phosphonic acids, hydrophobic and hydrophilic with 1-4 phosphonic groups, with BHF NPLs. A decrease in the saturation magnetisation after functionalising the BHF NPLs was correlated with the mass fraction of the nonmagnetic coating, whereas the saturation magnetisation of the NPLs coated with a tetraphosphonic acid at 80 °C was significantly lower than expected. We showed that such a substantial decrease in the saturation magnetisation originates from the disintegration of BHF NPLs, which was observed with atomic-resolution scanning transmission electron microscopy and confirmed by a computational study based on state-of-the-art first-principles calculations. Fe K-edge XANES (X-ray absorption near-edge structure) and EXAFS (Extended X-ray absorption fine structure) combined with Fourier-transformed infrared (FTIR) spectroscopy confirmed the formation of an Fe-phosphonate complex on the partly decomposed NPLs. Comparing our results with other functionalised magnetic nanoparticles confirmed that saturation magnetisation can be exploited to identify the disintegration of magnetic nanoparticles when insoluble disintegration products are formed.

17.
Acta Chim Slov ; 69(2): 448-457, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35861088

RESUMEN

NaYF4 nanoparticles codoped with Yb3+ and Tm3+ exhibit upconversion fluorescence in near-infrared and visible spectral range. Consequently, such upconverting nanoparticles (UCNPs) can be used as contrast agents in medical diagnostics and bioassays. However, they are not chemically stable in aqueous dispersions, especially in phosphate solutions. Protective amphiphilic-polymer coatings based on poly(maleic anhydride-alt-octadec-1-ene) (PMAO) and bis(hexamethylene)triamine (BHMT) were optimised to improve the chemical stability of UCNPs under simulated physiological conditions. Morphologies of the bare and coated UCNPs was inspected with transmission electron microscopy. All samples showed intense UC fluorescence at ~800 nm, typical for Tm3+. The colloidal stability of aqueous dispersions of bare and coated UCNPs was assessed by dynamic light scattering and measurements of zeta potential. The dissolution of UCNP in phosphate-buffered saline at 37 °C, was assessed potentiometrically by measuring the concentration of the dissolved fluoride. Protection against the dissolution of UCNPs was achieved by PMAO and PMAO crosslinked with BHMT.


Asunto(s)
Nanopartículas , Polímeros , Fluoruros , Fosfatos , Agua
18.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745462

RESUMEN

Magnetic nanoplatelets (NPLs) based on barium hexaferrite (BaFe12O19) are suitable for many applications because of their uniaxial magneto-crystalline anisotropy. Novel materials, such as ferroic liquids, magneto-optic composites, and contrast agents for medical diagnostics, were developed by specific surface functionalization of the barium hexaferrite NPLs. Our aim was to amino-functionalize the NPLs' surfaces towards new materials and applications. The amino-functionalization of oxide surfaces is challenging and has not yet been reported for barium hexaferrite NPLs. We selected two amine ligands with two different anchoring groups: an amino-silane and an amino-phosphonate. We studied the effect of the anchoring group, backbone structure, and processing conditions on the formation of the respective surface coatings. The core and coated NPLs were examined with transmission electron microscopy, and their room-temperature magnetic properties were measured. The formation of coatings was followed by electrokinetic measurements, infrared and mass spectroscopies, and thermogravimetric analysis. The most efficient amino-functionalization was enabled by (i) amino-silanization of the NPLs precoated with amorphous silica with (3-aminopropyl)triethoxysilane and (ii) slow addition of amino-phosphonate (i.e., sodium alendronate) to the acidified NPL suspension at 80 °C.

19.
Langmuir ; 27(23): 14014-24, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22017631

RESUMEN

We have studied the preparation of oriented BaFe(12)O(19) films produced using electrophoretic deposition (EPD). Highly anisotropic, platelike BaFe(12)O(19) particles were synthesized under hydrothermal conditions, and from these particles, stable suspensions were prepared in 1-butanol by the addition of dodecylbenzene sulfonic acid as a surfactant. The interplay of the interaction forces between the suspended particles and the forces acting on the particles during the EPD directed the particles' assembly in the plane of the substrate. The most significant effect on the orientation of the films was the diameter-to-thickness ratio of the particles, which was experimentally confirmed with X-ray analyses, electron microscopy, and magnetic measurements. The abnormal grain growth that accompanied the sintering at 1150 °C further improved the overall orientation of the films, which showed highly anisotropic magnetic behavior with a remanent-to-saturation magnetization ratio exceeding 0.8.

20.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835561

RESUMEN

Janus particles, which have two surfaces exhibiting different properties, are promising candidates for various applications. For example, magneto-optic Janus particles could be used for in-vivo cancer imaging, drug delivery, and photothermal therapy. The preparation of such materials on a relatively large scale is challenging, especially if the Janus structure consists of a hard magnetic material like barium hexaferrite nanoplatelets. The focus of this study was to adopt the known Pickering emulsion, i.e., Granick's method, for the preparation of barium-hexaferrite/gold Janus nanoplatelets. The wax-in-water Pickering emulsions were stabilized with a combination of cetyltrimethyl ammonium bromide and barium hexaferrite nanoplatelets at 80 °C. Colloidosomes of solidified wax covered with the barium hexaferrite nanoplatelets formed after cooling the Pickering emulsions to room temperature. The formation and microstructure of the colloidosomes were thoroughly studied by optical and scanning electron microscopy. The process was optimized by various processing parameters, such as the composition of the emulsion system and the speed and time of emulsification. The colloidosomes with the highest surface coverage were used to prepare the Janus nanoplatelets by decorating the exposed surfaces of the barium hexaferrite nanoplatelets with gold nanospheres using mercaptan chemistry. Transmission electron microscopy was used to inspect the barium-hexaferrite/gold Janus nanoplatelets that were prepared for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA