Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(48): 29655-29666, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453100

RESUMEN

Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1-S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.


Asunto(s)
Análisis Espectral
2.
Chemistry ; 27(20): 6324-6333, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33561303

RESUMEN

Porphycene, a porphyrin isomer, is an efficient fluorophore. However, four-fold meso substitution with alkyl groups decreases the fluorescence quantum yield by orders of magnitude. For aryl substituents, this effect is small. To explain this difference, we have synthesized and studied a mixed aryl-alkyl-substituted compound, 9,20-diphenyl-10,19-dimethylporphycene, as well as the 9,20-diphenyl and 9,20-dimethyl derivatives. Analysis of the structural, spectroscopic, and photophysical data of the six porphycenes, combined with quantum chemical calculations, shows a clear correlation between the strength of the intramolecular NH⋅⋅⋅N hydrogen bonds and the efficiency of the radiationless depopulation of the lowest-excited singlet state. This result led us to propose a model in which the delocalization of the inner protons in the cavity of the macrocycle is responsible for the nonradiative deactivation channel. The applicability of the model is confirmed by the literature data for other alkyl- or aryl-substituted porphycenes. The finding of a correlation between structural and emissive characteristics enables a rational design of porphycenes with desired photophysical properties.

3.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206494

RESUMEN

1H-pyrrolo[3,2-h]qinoline (PQ) and 2-(2'-pyridyl)pyrrole (PP) are important systems in the study of proton-transfer reactions. These molecules possess hydrogen bond donor (pyrrole) and acceptor (pyridine) groups, which leads to the formation of cyclic dimers in their crystals. Herein, we present a joint experimental (Raman scattering) and computational (DFT modelling) study on the high-pressure behaviour of PQ and PP molecular crystals. Our results indicate that compression up to 10 GPa (100 kbar) leads to considerable strengthening of the intermolecular hydrogen bond within the cyclic dimers. However, the intramolecular N-H∙∙∙N interaction is either weakly affected by pressure, as witnessed in PQ, or weakened due to compression-induced distortions of the molecule, as was found for PP. Therefore, we propose that the compression of these systems should facilitate double proton transfer within the cyclic dimers of PQ and PP, while intramolecular transfer should either remain unaffected (for PQ) or weakened (for PP).

4.
Chemistry ; 26(70): 16666-16675, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32585068

RESUMEN

Free base and zinc porphyrins functionalized with cyclooctatetraene (COT), a molecule known as a good triplet-state quencher, have been obtained and characterized in detail by structural, spectral, and photophysical techniques. Substitution with COT leads to a dramatic decrease of the intrinsic lifetime of the porphyrin triplet. As a result, photostability in oxygen-free solution increases by two to three orders of magnitude. In non-degassed solutions, improvement of photostability is about tenfold for zinc porphyrins, but the free bases become less photostable. Similar quantum yields of photodegradation in free base and zinc porphyrins containing the COT moiety indicate a common mechanism of photochemical decomposition. The new porphyrins are expected to be much less phototoxic, since the quantum yield of singlet oxygen formation strongly decreases because of the shorter triplet lifetime. The reduction of triplet lifetime should also enhance the brightness and reduce blinking in porphyrin chromophores emitting in single-molecule regime, since the duration of dark OFF states will be shorter.

5.
Phys Chem Chem Phys ; 22(30): 17117-17128, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32687131

RESUMEN

We performed time-resolved transient absorption and fluorescence anisotropy measurements in order to study tautomerization of porphycene in rigid polymer matrices at cryogenic temperatures. Studies were carried out in poly(methyl methacrylate) (PMMA), poly(vinyl butyral) (PVB), and poly(vinyl alcohol) (PVA). The results prove that in all studied media hydrogen tunnelling plays a significant role in the double hydrogen transfer which becomes very sensitive to properties of the environment below approx. 150 K. We also demonstrate that there exist two populations of porphycene molecules in rigid media: "hydrogen-transferring" molecules, in which tautomerization occurs on time scales below 1 ns and "frozen" molecules in which double hydrogen transfer is too slow to be monitored with nanosecond techniques. The number of "frozen" molecules increases when the sample is cooled. We explain this effect by interactions of guest molecules with a rigid host matrix which disturbs symmetry of porphycene and hinders tunnelling. Temperature dependence of the number of hydrogen-transferring molecules suggests that the factor which restores the symmetry of the double-minimum potential well in porphycene are intermolecular vibrations localized in separated regions of the amorphous polymer.

6.
J Phys Chem A ; 124(23): 4594-4604, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32423205

RESUMEN

Two porphycenes, substituted at the meso positions with two and four methyl groups, respectively, reveal similar absorption spectra, but their photophysical properties are completely different. 9,20-dimethylporphycene emits fluorescence with about 20% quantum yield, independent of the solvent. In contrast, fluorescence of 9,10,19,20-tetramethylporphycene is extremely weak in nonviscous solvents, but it can be recovered by placing the chromophore in a rigid environment. We propose a model that explains these differences, based on calculations and structural analogies with other extremely weakly emitting derivatives, dibenzo[cde,mno]porphycenes. The efficient S1 deactivation involves delocalization of two inner cavity protons coupled with proton translocation toward a high-energy cis tautomer. The latter process leads to distortion from planarity. The probability of deactivation increases with the strength of the intramolecular NH···N hydrogen bonds. The model also explains the observation of biexponential fluorescence decay in weakly emitting porphycenes. It can be extended to other derivatives, in particular, the asymmetrically substituted ones. We also point to the possibility of using specific porphycenes as viscosity sensors, in particular, when working in single molecule regime.

7.
J Phys Chem A ; 123(13): 2727-2733, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30821450

RESUMEN

A porphycene-derived compound with a 20 π-electron skeleton has been obtained by replacing two pyrrolene units of porphycene by pyridine rings. NMR, electronic absorption and MCD spectra, and the lack of fluorescence are typical for 4 N cyclic π electron systems. The electronic structure and the differences with respect to porphycene can be rationalized by treating these compounds as perturbed, doubly positively charged [22]annulene and [20]annulene perimeters, respectively. Even though the spectroscopic and photophysical criteria proposed for antiaromatic systems are fulfilled, the molecule is very stable. We argue that the compound should be characterized as nonaromatic rather than antiaromatic. The perimeter model is recommended as a powerful tool for predicting the electronic structure and spectra and as a useful addition to other methods that probe the aromaticity.

8.
Methods Appl Fluoresc ; 9(3)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33910172

RESUMEN

Photobleaching of single molecules has been studied using confocal fluorescence microscopy for porphycene, a porphyrin isomer, and its two derivatives. Fourfold substitution of porphycene with bulkytert-butyl groups leads to the enhancement of photostability, even though the spectral, photophysical, and redox parameters remain similar. We attribute this effect to the increase of the efficiency of physical quenching of the chromophore triplet state by oxygen, compared with the yield of chemical reaction that leads to photobleaching. Analysis of the observed photon fluxes from single emitters embedded in a polymer film shows that the experiment based on fluorescence is biased towards detection of molecules which have oxygen-the triplet quencher-in their vicinity. The distribution of the measured photodegradation quantum yields is very heterogeneous, suggesting that physical and chemical quenching rates exhibit different distance and orientation dependences.

9.
Chempluschem ; 85(9): 2197-2206, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32989927

RESUMEN

Six porphycenes have been synthesized, bearing one, two, or three fluorine atoms attached directly to the 18-π-electron system at the meso positions. These novel compounds have been characterized by structural, electrochemical, and spectral techniques, combined with quantum chemical calculations. In three fluoroporphycenes, the unsymmetric substitution pattern leads to the presence of two nonequivalent trans tautomeric forms. They have been identified using electronic absorption, emission, and magnetic circular dichroism spectroscopies. Their relative energies have been estimated for the ground and lowest excited electronic states. Tautomerization potential is quasi-symmetric in S0 , but becomes strongly nonsymmetric in S1 . Femtosecond transient absorption studies allowed determination of tautomerization rates, larger and similar for both directions of the double hydrogen transfer in S0 , lower and disparate in S1 . Fluoroporphycenes emerge as good candidates for detailed studies of mechanisms of double hydrogen transfer, as well as processes responsible for rapid radiationless excited state depopulation.

10.
J Phys Chem Lett ; 7(2): 283-8, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26727277

RESUMEN

Investigation of the double hydrogen transfer in porphycene, its 2,7,12,17-tetra-tert-butyl derivative, and their N-deuterated isotopologues revealed the dominant role of tunneling, even at room temperature in condensed phase. Ultrafast optical spectroscopy with polarized light employed in a wide range of temperatures allowed the identification and evaluation of contributions of two tunneling modes: vibrational ground-state tunneling, occurring from the zero vibrational level, and vibrationally activated, via a large amplitude, low-frequency mode. Good correspondence was found between the rates of incoherent tunneling occurring in condensed phase and the values estimated on the basis of tunneling splittings observed in molecules isolated in supersonic jets or helium nanodroplets. The results provide solid experimental insight into widely proposed quantum facets of ubiquitous hydrogen-transfer phenomena.

11.
J Phys Chem B ; 119(6): 2292-301, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25105931

RESUMEN

Double hydrogen transfer occurring in both ground and the lowest electronically excited singlet states was studied for a series of 19 differently substituted porphycenes. The rates of tautomerization have been determined using femtosecond pump-probe spectroscopy with polarized light. The values vary by over 3 orders of magnitude, suggesting the importance of tunneling. Good correlation exists between the values of the rates and the parameters characterizing the strength of two intramolecular hydrogen bonds: proton NMR shift, distance between the hydrogen-bonded nitrogen atoms, and the NH stretching frequency. While hydrogen-bond strength is the main factor determining the rate of double hydrogen transfer, other factors, such as static and dynamic symmetry breaking and the population of low-frequency vibrations also have to be taken into account.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA