Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 922
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662272

RESUMEN

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo , Extensión de la Cadena Peptídica de Translación , Factor 2 de Elongación Peptídica/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Factor 2 de Elongación Peptídica/genética , Fosforilación , Receptores de Glutamato Metabotrópico/genética
2.
Nature ; 598(7879): 174-181, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616072

RESUMEN

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Asunto(s)
Encéfalo/citología , Forma de la Célula , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Atlas como Asunto , Biomarcadores/metabolismo , Encéfalo/anatomía & histología , Encéfalo/embriología , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/metabolismo , Neurogénesis , Neuroglía/citología , Neuronas/citología , RNA-Seq , Reproducibilidad de los Resultados
3.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38418221

RESUMEN

As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aß reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Ratones , Femenino , Animales , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ratones Transgénicos , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
4.
J Biol Chem ; 299(6): 104814, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37178919

RESUMEN

Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) patients often respond to EGFR tyrosine kinase inhibitors (TKIs) initially but eventually develop resistance to TKIs. The switch of EGFR downstream signaling from TKI-sensitive to TKI-insensitive is a critical mechanism-driving resistance to TKIs. Identification of potential therapies to target EGFR effectively is a potential strategy to treat TKI-resistant LUADs. In this study, we developed a small molecule diarylheptanoid 35d, a curcumin derivative, that effectively suppressed EGFR protein expression, killed multiple TKI-resistant LUAD cells in vitro, and suppressed tumor growth of EGFR-mutant LUAD xenografts with variant TKI-resistant mechanisms including EGFR C797S mutations in vivo. Mechanically, 35d triggers heat shock protein 70-mediated lysosomal pathway through transcriptional activation of several components in the pathway, such as HSPA1B, to induce EGFR protein degradation. Interestingly, higher HSPA1B expression in LUAD tumors associated with longer survival of EGFR-mutant, TKI-treated patients, suggesting the role of HSPA1B on retarding TKI resistance and providing a rationale for combining 35d with EGFR TKIs. Our data showed that combination of 35d significantly inhibits tumor reprogression on osimertinib and prolongs mice survival. Overall, our results suggest 35d as a promising lead compound to suppress EGFR expression and provide important insights into the development of combination therapies for TKI-resistant LUADs, which could have translational potential for the treatment of this deadly disease.


Asunto(s)
Adenocarcinoma del Pulmón , Diarilheptanoides , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Diarilheptanoides/farmacología , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología
5.
J Am Chem Soc ; 146(3): 1806-1812, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193677

RESUMEN

Controllable fluorocarbon chain elongation (CFCE) is a promising yet underdeveloped strategy for the well-defined synthesis of structurally novel polyfluorinated compounds. Herein, the direct and efficient trifluorovinylation and pentafluorocyclopropylation of aldehydes are described by using TMSCF2Br (TMS = trimethylsilyl) as the sole fluorocarbon source, accomplishing the goals of CFCE from C1 to C2 and from C1 to C3, respectively. The key to the success of these CFCE processes lies in the unique and diversified chemical reactivity of TMSCF2Br, which can serve as two different precursors, namely, a TMSCF2 radical precursor and a difluorocarbene precursor. Various functional groups are amenable to this new synthetic protocol, providing streamlined access to a broad range of alcohols containing trifluorovinyl or pentafluorocyclopropyl moieties from abundantly available aldehydes. The potential utility of these methods is further demonstrated by the gram-scale synthesis, derivatization, and measurement of log P values of the products.

6.
J Am Chem Soc ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905206

RESUMEN

Quantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity. However, the photoluminescence quantum yield (PLQY) of FNs is significantly lower compared with that of original QDs. It is urgent to develop a strategy to solve the issue, aiming to further enhance detection sensitivity. In this study, we found that the decrease of PLQY of FNs prepared by free radical polymerization was attributed to two factors: (1) generation of defects that can cause nonradiative transitions resulting from QD-ligands desorption and QD-shell oxidation induced by free radicals; (2) self-absorption resulting from aggregation caused by incompatibility of QDs with polymers. Based on these, we proposed a multihierarchical regulation strategy that includes: (1) regulating QD-ligands; (2) precisely controlling free radical concentration; and (3) constructing cross-linked structures of polymer to improve compatibility and to reduce the formation of surface defects. It is crucial to emphasize that the simultaneous coordination of multiple factors is essential. Consequently, a world-record PLQY of 97.6% for FNs was achieved, breaking through the current bottleneck at 65%. The flexible application of this regulatory concept paves the way for the large-scale production of high-brightness QD-polymer complexes, enhancing their potential applications in sensitive biomedical detection.

7.
Ann Rheum Dis ; 83(7): 847-857, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38443140

RESUMEN

OBJECTIVES: To assess, in spondyloarthritis (SpA), the discriminative value of the Outcome Measures in Rheumatology (OMERACT) ultrasound lesions of enthesitis and their associations with clinical features in this population. METHODS: In this multicentre study involving 20 rheumatology centres, clinical and ultrasound examinations of the lower limb large entheses were performed in 413 patients with SpA (axial SpA and psoriatic arthritis) and 282 disease controls (osteoarthritis and fibromyalgia). 'Active enthesitis' was defined as (1) power Doppler (PD) at the enthesis grade ≥1 plus entheseal thickening and/or hypoechoic areas, or (2) PD grade >1 (independent of the presence of entheseal thickening and/or hypoechoic areas). RESULTS: In the univariate analysis, all OMERACT lesions except enthesophytes/calcifications showed a significant association with SpA. PD (OR=8.77, 95% CI 4.40 to 19.20, p<0.001) and bone erosions (OR=4.75, 95% CI 2.43 to 10.10, p<0.001) retained this association in the multivariate analysis. Among the lower limb entheses, only the Achilles tendon was significantly associated with SpA (OR=1.93, 95% CI 1.30 to 2.88, p<0.001) in the multivariate analyses. Active enthesitis showed a significant association with SpA (OR=9.20, 95% CI 4.21 to 23.20, p<0.001), and unlike the individual OMERACT ultrasound lesions it was consistently associated with most clinical measures of SpA disease activity and severity in the regression analyses. CONCLUSIONS: This large multicentre study assessed the value of different ultrasound findings of enthesitis in SpA, identifying the most discriminative ultrasound lesions and entheseal sites for SpA. Ultrasound could differentiate between SpA-related enthesitis and other forms of entheseal pathology (ie, mechanical enthesitis), thus improving the assessment of entheseal involvement in SpA.


Asunto(s)
Entesopatía , Espondiloartritis , Ultrasonografía Doppler , Humanos , Femenino , Masculino , Entesopatía/diagnóstico por imagen , Adulto , Persona de Mediana Edad , Ultrasonografía Doppler/métodos , Espondiloartritis/diagnóstico por imagen , Espondiloartritis/complicaciones , Artritis Psoriásica/diagnóstico por imagen , Artritis Psoriásica/complicaciones , Índice de Severidad de la Enfermedad , Tendón Calcáneo/diagnóstico por imagen , Tendón Calcáneo/patología , Estudios de Casos y Controles
8.
HIV Med ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770643

RESUMEN

OBJECTIVE: The objective of this study was to gain insight into the barriers hindering the use of pre-exposure prophylaxis (PrEP) among men who have sex with men (MSM) in five cities in China. METHODS: MSM were recruited via community-based organizations in an online "snowball" manner. Participants completed the questionnaire anonymously and shared it with key MSM peers (seeds) in five cities in China. Based on the results of univariate analysis, we used a structural equation model to analyse the role of PrEP knowledge awareness, PrEP counselling, and other behavioural variables on PrEP use. RESULTS: The study collected a total of 4223 valid questionnaires, and 18.2% of participants reported PrEP use. The results of the standardized total effects showed that the following paths were statistically significant (p < 0.05): from the age of first sex with men to PrEP knowledge awareness (ß = -0.113) and PrEP use (ß = 0.042); from high-risk sexual behaviour scores to PrEP counselling (ß = 0.039) and PrEP use (ß = 0.103); from the number of HIV tests in the last year to PrEP knowledge awareness (ß = 0.034), PrEP counselling (ß = 0.170), and PrEP use (ß = 0.197); from the level of self-perceived risk of HIV infection to PrEP counselling (ß = -0.115); from PrEP knowledge awareness to PrEP use (ß = -0.049); and from PrEP counselling to PrEP use (ß = 0.420). CONCLUSIONS: The proportion of PrEP use among MSM was relatively low. Age at first sex with men, number of HIV tests, high-risk sexual behaviour, and PrEP counselling had a positive effect on PrEP use, whereas PrEP knowledge awareness had an inverse effect on PrEP use.

9.
Cytokine ; 177: 156556, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417214

RESUMEN

BACKGROUND: Impaired wound healing in traumatic skin injuries remains a severe clinical challenge due to impaired re-vascularization, harmful bacteria infection, and inflammation dysregulation. Macrophages are recognized as prominent immune cells in tissue regeneration and wound healing. Consequently, the modulation of macrophages provides a promising therapeutic target for wound healing disorders. Here, we aimed to explore whether a novel constructed combination of thermosensitive hydrogel Pluronic F-127 (PF-127) and phillyrin (PH, the main active compound of forsythia suspensa) could improve skin wound healing. METHODS: Firstly, the biological effects of pH on the phenotype and inflammation of macrophages were assessed by flow cytometry and ELISA. The biocompatibility of the PF-127 plus PH combination was investigated on keratinocytes and red blood cells. The biological effect of PF-127/PH hydrogel on the migratory ability of keratinocytes in vitro was evaluated using the scratch and transwell migration assays. In addition,S. aureusandE. coliwere employed to test the antibacterial properties of the PF-127 plus PH combination. Finally, PF-127 plus PH scaffold was appliedto the full-thickness skin defect in mice. Histomorphological evaluation and immunochemistry were performed to explore the wound-healing activity of PF-127/PH hydrogel. RESULTS: PH can promote the polarization of macrophages from the M1 (pro-inflammatory) phenotype to the M2 (anti-inflammatory) phenotype. The PF-127/PH hydrogel was highly biocompatible and showed a potent stimulative effect on the migration of keratinocytesin vitro. The combination of PF-127 and PH exerted a pronounced antibacterial activity onS. aureusandE. coli in vitro.PF-127/PH hydrogel potently accelerates the healing of full-thickness skin defects by promoting skin cell proliferation, accelerating angiogenesis, and inhibiting inflammation. CONCLUSIONS: Our study suggests that PF-127/PH hydrogel has excellent potential for treating traumatic skin defects.


Asunto(s)
Glucósidos , Hidrogeles , Cicatrización de Heridas , Ratones , Animales , Hidrogeles/farmacología , Macrófagos , Poloxámero/farmacología , Antibacterianos/farmacología , Inflamación
10.
Cancer Cell Int ; 24(1): 198, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835077

RESUMEN

Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.

11.
Neurochem Res ; 49(3): 692-705, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38047987

RESUMEN

Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and significantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention and treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Disacáridos , Flavanonas , Daño por Reperfusión , Ratas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Inflamasomas/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/metabolismo , Proteínas de Ciclo Celular
12.
Analyst ; 149(12): 3363-3371, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712505

RESUMEN

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.


Asunto(s)
Oro , Polímeros Impresos Molecularmente , Dióxido de Silicio , Espectrometría Raman , Transferrina , Humanos , Espectrometría Raman/métodos , Transferrina/análisis , Transferrina/química , Oro/química , Polímeros Impresos Molecularmente/química , Dióxido de Silicio/química , Límite de Detección , Nanotubos/química , Nanopartículas de Magnetita/química , Impresión Molecular/métodos , Ácidos Borónicos/química , Polímeros/química , Compuestos de Sulfhidrilo
13.
Environ Sci Technol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900493

RESUMEN

Rubber-derived chemicals (RDCs) originating from tire and road wear particles are transported into road stormwater runoff, potentially threatening organisms in receiving watersheds. However, there is a lack of knowledge on time variation of novel RDCs in runoff, limiting initial rainwater treatment and subsequent rainwater resource utilization. In this study, we investigated the levels and time-concentration profiles of 35 target RDCs in road stormwater runoff from eight functional areas in the Greater Bay Area, South China. The results showed that the total concentrations of RDCs were the highest on the expressway compared with other seven functional areas. N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), 6PPD-quinone, benzothiazole, and 1,3-diphenylguanidine were the top four highlighted RDCs (ND-228840 ng/L). Seasonal and spatial differences revealed higher RDC concentrations in the dry season as well as in less-developed regions. A lag effect of reaching RDC peak concentrations in road stormwater runoff was revealed, with a lag time of 10-90 min on expressways. Small-intensity rainfall triggers greater contamination of rubber-derived chemicals in road stormwater runoff. Environmental risk assessment indicated that 35% of the RDCs posed a high risk, especially PPD-quinones (risk quotient up to 2663). Our findings contribute to a better understanding of managing road stormwater runoff for RDC pollution.

14.
J Immunol ; 209(10): 1918-1929, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426956

RESUMEN

Cyprinid herpesvirus 3 (CyHV-3) has caused severe economic losses to carp culture, but its pathogenicity is far from clear. Our previous study has revealed that microRNA (miR)-722 was upregulated during CyHV-3 infection, indicating that miR-722 might play an important role in CyHV-3 replication. In this study, we found that overexpression of miR-722 inhibited CyHV-3 replication and promoted IFN expression. The putative target gene of miR-722 was searched over the CyHV-3 genome, and ORF89 was identified and validated as a target gene of miR-722. Overexpression of ORF89 markedly reduced the expression of IFN and IFN-stimulated genes. Mechanistically, ORF89 interacted with and degraded IFN regulatory factor 3 (IRF3), and inhibited the entry of IRF3 into the nucleus by suppressing the dimerization of IRF3. Moreover, ORF89-mediated suppression of IFN expression could be restored by adding miR-722. To our knowledge, our findings confirm a novel virus-host combat, in which CyHV-3 evades host antiviral immunity by its ORF89 protein, whereas host miR-722, upregulated on CyHV-3 infection, targets ORF89 to impede CyHV-3 replication.


Asunto(s)
Evasión Inmune , MicroARNs , Factor 3 Regulador del Interferón/genética , Proteínas Virales/genética , MicroARNs/genética
15.
J Phys Chem A ; 128(12): 2366-2375, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38489755

RESUMEN

Accurate spectroscopic data of carbon dioxide are widely used in many important applications, such as carbon monitoring missions. Here, we present comb-locked cavity ring-down saturation spectroscopy of the second most abundant isotopologue of CO2, 13C16O2. We determined the positions of 88 lines in three vibrational bands in the 1.6 µm region, 30011e/30012e/30013e-00001e, with an accuracy of a few kHz. Based on the analysis of combination differences, we obtained for the first time the ground-state rotational energies with kHz accuracy. We also provide a set of hybrid line positions for 150 13C16O2 transitions. The rotational energies (J < 50) in the 30013e vibrational state can be fitted by a set of rotational and centrifugal constants with deviations within a few kHz, indicating that the 30013e state is free of perturbations. These precise isotopic line positions will be utilized to improve the Hamiltonian model and quantitative remote sensing of carbon dioxide. Moreover, they will help to track changes in the carbon source and sink through isotopic analysis.

16.
J Adv Nurs ; 80(5): 1826-1837, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37908145

RESUMEN

AIMS: This study aimed to identify different profiles of chronic disease resource utilization among patients with coronary heart disease in Tibet and explore the relationship between these profiles and quality of life. DESIGN: A cross-sectional study. METHODS: Patients with coronary heart disease who were treated in a tertiary hospital in Tibet and its cooperative points from January 2021 to July 2021 were selected as the study participants. All participants completed a general information questionnaire, the Chronic Disease Resource Utilization Questionnaire (CIRS) and the Health Status Survey Short Form (SF-36). Chronic disease resource utilization was profiled, and its relationship to quality of life was explored using hierarchical linear regression. RESULTS: A total of 382 patients were enrolled in this study. Regarding chronic disease resource utilization, the participants were divided into three latent profiles: 'Poor utilization group' (n = 151), 'Effective utilization group' (n = 155) and 'Full utilization group' (n = 76). Different profiles of chronic disease resource utilization of patients were significantly associated with quality of life (R2 = .126, p < .001). CONCLUSION: Healthcare providers should identify patients with different profiles, define their utilization features of chronic disease resources and adopt targeted interventions to guide them in acquiring enough disease support resources to improve their quality of life. IMPLICATION: Understanding different resources using preferences of coronary heart disease patients can help healthcare providers and related sectors to provide other supports based on different profiles of patients, thus enhancing their quality of life. REPORTING METHOD: The study followed the STROBE guideline. NO PATIENT OR PUBLIC CONTRIBUTION: There was no patient or public involvement in the design of the study.


Asunto(s)
Enfermedad Coronaria , Calidad de Vida , Humanos , Estudios Transversales , Enfermedad Crónica , Encuestas y Cuestionarios
17.
Arch Pharm (Weinheim) ; : e2400082, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724255

RESUMEN

As the main active compound of Glycyrrhiza glabra L., glabridin (GLD) has been shown to have multiple bioactivities, whereas the clinical application of GLD is restricted by its low water solubility. In this study, GLD was encapsulated into a sulfobutylether-ß-cyclodextrin (SBE-ß-CD)-based inclusion complex (SBE-ß-CD/GLD) by the freeze-drying method. The materials characterization, antibacterial activity, stimulated cellular behavior and in vivo full-thickness diabetic wound healing ability of the hydrogels were assessed and analyzed. The successful encapsulation of the inclusion complex was confirmed by ultraviolet (UV) visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffractometer (XRD), scanning electron microscope (SEM), and nuclear magnetic resonance (NMR). SBE-ß-CD as an excipient significantly enhances the water solubility of GLD, and SBE-ß-CD/GLD showed excellent biocompatibility on human vascular endothelial cells (HUVECs) and erythrocytes. The SBE-ß-CD/GLD inclusion complex exerted a pronounced antibacterial activity on Staphylococcus aureus and Escherichia coli in vitro. The SBE-ß-CD/GLD inclusion complex markedly enhanced the antioxidant activity compared with free GLD. The SBE-ß-CD/GLD inclusion complex potently accelerates the healing of full-thickness skin defects by inhibiting inflammation. The outcomes suggest that SBE-ß-CD could be used as a promising drug delivery system for the clinical application of GLD.

18.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255776

RESUMEN

Bisbenzylisoquinoline and aporphine alkaloids are the two main pharmacological compounds in the ancient sacred lotus (Nelumbo nucifera). The biosynthesis of bisbenzylisoquinoline and aporphine alkaloids has attracted extensive attention because bisbenzylisoquinoline alkaloids have been reported as potential therapeutic agents for COVID-19. Our study showed that NnCYP80A can catalyze C-O coupling in both (R)-N-methylcoclaurine and (S)-N-methylcoclaurine to produce bisbenzylisoquinoline alkaloids with three different linkages. In addition, NnCYP80G catalyzed C-C coupling in aporphine alkaloids with extensive substrate selectivity, specifically using (R)-N-methylcoclaurine, (S)-N-methylcoclaurine, coclaurine and reticuline as substrates, but the synthesis of C-ring alkaloids without hydroxyl groups in the lotus remains to be elucidated. The key residues of NnCYP80G were also studied using the 3D structure of the protein predicted using Alphafold 2, and six key amino acids (G39, G69, A211, P288, R425 and C427) were identified. The R425A mutation significantly decreased the catalysis of (R)-N-methylcoclaurine and coclaurine inactivation, which might play important role in the biosynthesis of alkaloids with new configurations.


Asunto(s)
Alcaloides , Aporfinas , Bencilisoquinolinas , Nelumbo , Nelumbo/genética , Aminoácidos
19.
J Biol Chem ; 298(8): 102207, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772494

RESUMEN

Pain is a multidimensional perception that includes unpleasant somatosensory and affective experiences; however, the underlying neural circuits that mediate different components of pain remain elusive. Although hyperactivity of basolateral amygdala glutamatergic (BLAGlu) neurons is required for the somatosensory and emotional processing of pain, the precise excitatory inputs to BLAGlu neurons and their roles in mediating different aspects of pain are unclear. Here, we identified two discrete glutamatergic neuronal circuits in male mice: a projection from the insular cortex glutamatergic (ICGlu) to BLAGlu neurons, which modulates both the somatosensory and affective components of pain, and a projection from the mediodorsal thalamic nucleus (MDGlu) to BLAGlu neurons, which modulates only the aversive-affective component of pain. Using whole-cell recording and fiber photometry, we found that neurons within the IC→BLA and MD→BLA pathways were activated in mice upon inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into their paws. Optical inhibition of the ICGlu→BLA pathway increased the nociceptive threshold and induced behavioral place preference in CFA mice. In contrast, optical inhibition of the MDGlu→BLA pathway did not affect the nociceptive threshold but still induced place preference in CFA mice. In normal mice, optical activation of the ICGlu→BLA pathway decreased the nociceptive threshold and induced place aversion, while optical activation of the MDGlu→BLA pathway only evoked aversion. Taken together, our results demonstrate that discrete ICGlu→BLA and MDGlu→BLA pathways are involved in modulating different components of pain, provide insights into its circuit basis, and better our understanding of pain perception.


Asunto(s)
Complejo Nuclear Basolateral , Amígdala del Cerebelo/metabolismo , Animales , Masculino , Ratones , Neuronas/metabolismo , Dolor/metabolismo , Técnicas de Placa-Clamp
20.
J Am Chem Soc ; 145(44): 24375-24385, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883809

RESUMEN

Here, we develop a novel methodology for synthesizing chiral CdSe@ZnS quantum dots (QDs) with enhanced circularly polarized luminescence (CPL) by incorporating l-/d-histidine (l-/d-His) ligands during ZnS shell growth at the water/oil interface. The resulting chiral QDs exhibit exceptional absolute photoluminescence quantum yield of up to 67.2%, surpassing the reported limits of 40.0% for chiral inorganic QDs, along with absorption dissymmetry factor (|gabs|) and luminescence dissymmetry factor (|glum|) values of 10-2, exceeding the range of 10-5-10-3 and 10-4-10-2, respectively. Detailed investigations of the synthetic pathway reveal that the interface, as a binary synthetic environment, facilitates the coordinated ligand exchange and shell growth mediated by chiral His-Zn2+ coordination complexes, leading to a maximum fluorescent brightness and chiroptical activities. The growth process, regulated by the His-Zn2+ coordination complex, not only reduces trap states on the CdSe surface, thereby enhancing the fluorescence intensity, but also significantly promotes the orbital hybridization between QDs and chiral ligands, effectively overcoming the shielding effect of the wide bandgap shell and imparting pronounced chirality. The proposed growth pathway elucidates the origin of chirality and provides insights into the regulation of the CPL intensity in chiral QDs. Furthermore, the application of CPL QDs in multilevel anticounterfeiting systems overcomes the limitations of replication in achiral fluorescence materials and enhances the system's resistance to counterfeiting, thus opening new opportunities for chiral QDs in optical anticounterfeiting and intelligent information encryption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA