Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37683634

RESUMEN

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Asunto(s)
Bacterias , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Metagenoma , Metagenómica , Filogenia , Actinobacteria/fisiología
2.
Hum Mol Genet ; 31(19): 3341-3354, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640139

RESUMEN

Genome-wide association studies (GWAS) have identified more than 75 genetic variants associated with Alzheimer's disease (ad). However, how these variants function and impact protein expression in brain regions remain elusive. Large-scale proteomic datasets of ad postmortem brain tissues have become available recently. In this study, we used these datasets to investigate brain region-specific molecular pathways underlying ad pathogenesis and explore their potential drug targets. We applied our new network-based tool, Edge-Weighted Dense Module Search of GWAS (EW_dmGWAS), to integrate ad GWAS statistics of 472 868 individuals with proteomic profiles from two brain regions from two large-scale ad cohorts [parahippocampal gyrus (PHG), sample size n = 190; dorsolateral prefrontal cortex (DLPFC), n = 192]. The resulting network modules were evaluated using a scale-free network index, followed by a cross-region consistency evaluation. Our EW_dmGWAS analyses prioritized 52 top module genes (TMGs) specific in PHG and 58 TMGs in DLPFC, of which four genes (CLU, PICALM, PRRC2A and NDUFS3) overlapped. Those four genes were significantly associated with ad (GWAS gene-level false discovery rate < 0.05). To explore the impact of these genetic components on TMGs, we further examined their differentially co-expressed genes at the proteomic level and compared them with investigational drug targets. We pinpointed three potential drug target genes, APP, SNCA and VCAM1, specifically in PHG. Gene set enrichment analyses of TMGs in PHG and DLPFC revealed region-specific biological processes, tissue-cell type signatures and enriched drug signatures, suggesting potential region-specific drug repurposing targets for ad.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Drogas en Investigación/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Proteómica
3.
Inorg Chem ; 63(13): 5831-5841, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38506755

RESUMEN

The exploration of new rare-earth (RE)-based triangular-lattice materials plays a significant role in motivating the discovery of exotic magnetic states. Herein, we report a family of hexagonal perovskite compounds Ba6RE2Ti4O17 (RE = Nd, Sm, Gd, Dy-Yb) with a space group of P63/mmc, where magnetic RE3+ ions are distributed on the parallel triangular-lattice layers within the ab-plane and stacked in an 'AA'-type fashion along the c-axis. The low-temperature magnetic characterizations indicate that all synthesized Ba6RE2Ti4O17 compounds exhibit dominant antiferromagnetic (AFM) interactions and the absence of magnetic order down to 1.8 K. The isothermal magnetization and electron spin resonance results reveal the distinct magnetic anisotropy for the compounds with different RE ions. Moreover, the as-grown Ba6Nd2Ti4O17 single crystals exhibit Ising-like magnetic anisotropy with a magnetic easy-axis perpendicular to the triangle-lattice plane and no long-range magnetic order down to 80 mK, as the quantum spin liquid candidate with dominant Ising-type interactions.

4.
Nucleic Acids Res ; 50(W1): W782-W790, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35610053

RESUMEN

Human complex traits and common diseases show tissue- and cell-type- specificity. Recently, single-cell RNA sequencing (scRNA-seq) technology has successfully depicted cellular heterogeneity in human tissue, providing an unprecedented opportunity to understand the context-specific expression of complex trait-associated genes in human tissue-cell types (TCs). Here, we present the first web-based application to quickly assess the cell-type-specificity of genes, named Web-based Cell-type Specific Enrichment Analysis of Genes (WebCSEA, available at https://bioinfo.uth.edu/webcsea/). Specifically, we curated a total of 111 scRNA-seq panels of human tissues and 1,355 TCs from 61 different general tissues across 11 human organ systems. We adapted our previous decoding tissue-specificity (deTS) algorithm to measure the enrichment for each tissue-cell type (TC). To overcome the potential bias from the number of signature genes between different TCs, we further developed a permutation-based method that accurately estimates the TC-specificity of a given inquiry gene list. WebCSEA also provides an interactive heatmap that displays the cell-type specificity across 1355 human TCs, and other interactive and static visualizations of cell-type specificity by human organ system, developmental stage, and top-ranked tissues and cell types. In short, WebCSEA is a one-click application that provides a comprehensive exploration of the TC-specificity of genes among human major TC map.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Programas Informáticos , Humanos , Algoritmos , Perfilación de la Expresión Génica/métodos , Internet , Herencia Multifactorial , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
5.
Nat Chem Biol ; 17(5): 585-592, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33707784

RESUMEN

YcaO enzymes catalyze several post-translational modifications on peptide substrates, including thioamidation, which substitutes an amide oxygen with sulfur. Most predicted thioamide-forming YcaO enzymes are encoded adjacent to TfuA, which when present, is required for thioamidation. While activation of the peptide amide backbone is well established for YcaO enzymes, the function of TfuA has remained enigmatic. Here we characterize the TfuA protein involved in methyl-coenzyme M reductase thioamidation and demonstrate that TfuA catalyzes the hydrolysis of thiocarboxylated ThiS (ThiS-COSH), a proteinaceous sulfur donor, and enhances the affinity of YcaO toward the thioamidation substrate. We also report a crystal structure of a TfuA, which displays a new protein fold. Our structural and mutational analyses of TfuA have uncovered conserved binding interfaces with YcaO and ThiS in addition to revealing a hydrolase-like active site featuring a Ser-Lys catalytic pair.


Asunto(s)
Proteínas Arqueales/química , Euryarchaeota/enzimología , Methanobacteriaceae/enzimología , Methanocaldococcus/enzimología , Oxidorreductasas/química , Tioamidas/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Euryarchaeota/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Cinética , Lectina de Unión a Manosa/química , Lectina de Unión a Manosa/genética , Lectina de Unión a Manosa/metabolismo , Methanobacteriaceae/genética , Methanocaldococcus/genética , Modelos Moleculares , Mutación , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Tioamidas/metabolismo
6.
PLoS Biol ; 18(2): e3000507, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32092071

RESUMEN

The enzyme methyl-coenzyme M reductase (MCR) plays an important role in mediating global levels of methane by catalyzing a reversible reaction that leads to the production or consumption of this potent greenhouse gas in methanogenic and methanotrophic archaea. In methanogenic archaea, the alpha subunit of MCR (McrA) typically contains four to six posttranslationally modified amino acids near the active site. Recent studies have identified enzymes performing two of these modifications (thioglycine and 5-[S]-methylarginine), yet little is known about the formation and function of the remaining posttranslationally modified residues. Here, we provide in vivo evidence that a dedicated S-adenosylmethionine-dependent methyltransferase encoded by a gene we designated methylcysteine modification (mcmA) is responsible for formation of S-methylcysteine in Methanosarcina acetivorans McrA. Phenotypic analysis of mutants incapable of cysteine methylation suggests that the S-methylcysteine residue might play a role in adaption to mesophilic conditions. To examine the interactions between the S-methylcysteine residue and the previously characterized thioglycine, 5-(S)-methylarginine modifications, we generated M. acetivorans mutants lacking the three known modification genes in all possible combinations. Phenotypic analyses revealed complex, physiologically relevant interactions between the modified residues, which alter the thermal stability of MCR in a combinatorial fashion that is not readily predictable from the phenotypes of single mutants. High-resolution crystal structures of inactive MCR lacking the modified amino acids were indistinguishable from the fully modified enzyme, suggesting that interactions between the posttranslationally modified residues do not exert a major influence on the static structure of the enzyme but rather serve to fine-tune the activity and efficiency of MCR.


Asunto(s)
Aminoácidos/metabolismo , Methanosarcina/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Methanosarcina/genética , Methanosarcina/crecimiento & desarrollo , Methanosarcina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Mutación , Operón , Oxidorreductasas/genética , Fenotipo , Procesamiento Proteico-Postraduccional/genética , Subunidades de Proteína , Temperatura
7.
Inorg Chem ; 62(34): 13867-13876, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37589129

RESUMEN

Rare-earth (RE)-based honeycomb-lattice materials with strong spin-orbit coupled Jeff = 1/2 moments have attracted great interest as a platform to realize the Kitaev quantum spin liquid (QSL) state. Herein, we report the discovery of a family of RE-based honeycomb-lattice magnets Ba9RE2(SiO4)6 (RE = Ho-Yb), which crystallize into the rhombohedral structure with the space group R3̅. In these serial compounds, magnetic RE3+ ions are arranged on a perfect honeycomb lattice within the ab-plane and stacked in the "ABCABC"-type fashion along the c-axis. All synthesized Ba9RE2(SiO4)6 (RE = Ho-Yb) polycrystals exhibit the dominant antiferromagnetic interaction and absence of magnetic order down to 2 K. In combination with the magnetization and electron spin resonance results, magnetic behaviors are discussed for the compounds with different RE ions. Moreover, the as-grown Ba9Yb2(SiO4)6 single crystals show large magnetic frustration with frustration index f = θCW/TN > 8 and no long-range magnetic ordering down to 0.15 K, being a possible QSL candidate material. These series of compounds are attractive for exploring the exotic magnetic phases of Kitaev materials with 4f electrons.

8.
Nucleic Acids Res ; 49(D1): D862-D870, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211888

RESUMEN

During the past decade, genome-wide association studies (GWAS) have identified many genetic variants with susceptibility to several thousands of complex diseases or traits. The genetic regulation of gene expression is highly tissue-specific and cell type-specific. Recently, single-cell technology has paved the way to dissect cellular heterogeneity in human tissues. Here, we present a reference database for GWAS trait-associated cell type-specificity, named Cell type-Specific Enrichment Analysis DataBase (CSEA-DB, available at https://bioinfo.uth.edu/CSEADB/). Specifically, we curated total of 5120 GWAS summary statistics data for a wide range of human traits and diseases followed by rigorous quality control. We further collected >900 000 cells from the leading consortia such as Human Cell Landscape, Human Cell Atlas, and extensive literature mining, including 752 tissue cell types from 71 adult and fetal tissues across 11 human organ systems. The tissues and cell types were annotated with Uberon and Cell Ontology. By applying our deTS algorithm, we conducted 10 250 480 times of trait-cell type associations, reporting a total of 598 (11.68%) GWAS traits with at least one significantly associated cell type. In summary, CSEA-DB could serve as a repository of association map for human complex traits and their underlying cell types, manually curated GWAS, and single-cell transcriptome resources.


Asunto(s)
Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo , Carácter Cuantitativo Heredable , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Internet , Especificidad de Órganos/genética
9.
BMC Genomics ; 23(Suppl 4): 362, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545758

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a debilitating immune-mediated disease of the central nervous system that affects over 2 million people worldwide, resulting in a heavy burden to families and entire communities. Understanding the genetic basis underlying MS could help decipher the pathogenesis and shed light on MS treatment. We refined a recently developed Bayesian framework, Integrative Risk Gene Selector (iRIGS), to prioritize risk genes associated with MS by integrating the summary statistics from the largest GWAS to date (n = 115,803), various genomic features, and gene-gene closeness. RESULTS: We identified 163 MS-associated prioritized risk genes (MS-PRGenes) through the Bayesian framework. We replicated 35 MS-PRGenes through two-sample Mendelian randomization (2SMR) approach by integrating data from GWAS and Genotype-Tissue Expression (GTEx) expression quantitative trait loci (eQTL) of 19 tissues. We demonstrated that MS-PRGenes had more substantial deleterious effects and disease risk. Moreover, single-cell enrichment analysis indicated MS-PRGenes were more enriched in activated macrophages and microglia macrophages than non-activated ones in control samples. Biological and drug enrichment analyses highlighted inflammatory signaling pathways. CONCLUSIONS: In summary, we predicted and validated a high-confidence MS risk gene set from diverse genomic, epigenomic, eQTL, single-cell, and drug data. The MS-PRGenes could further serve as a benchmark of MS GWAS risk genes for future validation or genetic studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Teorema de Bayes , Predisposición Genética a la Enfermedad , Humanos , Esclerosis Múltiple/genética , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
10.
Int J Neuropsychopharmacol ; 24(11): 879-891, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34214162

RESUMEN

BACKGROUND: Opioid use disorder (OUD) affects millions of people, causing nearly 50 000 deaths annually in the United States. While opioid exposure and OUD are known to cause widespread transcriptomic and epigenetic changes, few studies in human samples have been conducted. Understanding how OUD affects the brain at the molecular level could help decipher disease pathogenesis and shed light on OUD treatment. METHODS: We generated genome-wide transcriptomic and DNA methylation profiles of 22 OUD subjects and 19 non-psychiatric controls. We applied weighted gene co-expression network analysis to identify genetic markers consistently associated with OUD at both transcriptomic and methylomic levels. We then performed functional enrichment for biological interpretation. We employed cross-omics analysis to uncover OUD-specific regulatory networks. RESULTS: We found 6 OUD-associated co-expression gene modules and 6 co-methylation modules (false discovery rate <0.1). Genes in these modules are involved in astrocyte and glial cell differentiation, gliogenesis, response to organic substance, and response to cytokine (false discovery rate <0.05). Cross-omics analysis revealed immune-related transcription regulators, suggesting the role of transcription factor-targeted regulatory networks in OUD pathogenesis. CONCLUSIONS: Our integrative analysis of multi-omics data in OUD postmortem brain samples suggested complex gene regulatory mechanisms involved in OUD-associated expression patterns. Candidate genes and their upstream regulators revealed in astrocyte, and glial cells could provide new insights into OUD treatment development.


Asunto(s)
Encéfalo/patología , Metilación de ADN , Regulación de la Expresión Génica , Trastornos Relacionados con Opioides/genética , Adulto , Epigénesis Genética , Femenino , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma , Estados Unidos
11.
J Org Chem ; 86(23): 16434-16447, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34713700

RESUMEN

Direct C5 (hetero)arylation of uracil and uridine substrates with (hetero)aryl diazonium salts under photoredox catalysis with blue light was reported. The coupling proceeds efficiently with diazonium salts and heterocycles in good functional group tolerance at room temperature in aqueous solution without transition-metal components. A plausible radical mechanism has been proposed.


Asunto(s)
Elementos de Transición , Uracilo , Catálisis , Luz , Agua
12.
Proc Natl Acad Sci U S A ; 115(12): 3030-3035, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507203

RESUMEN

Methyl-coenzyme M reductase (MCR) is an essential enzyme found strictly in methanogenic and methanotrophic archaea. MCR catalyzes a reversible reaction involved in the production and consumption of the potent greenhouse gas methane. The α-subunit of this enzyme (McrA) contains several unusual posttranslational modifications, including the only known naturally occurring example of protein thioamidation. We have recently demonstrated by genetic deletion and mass spectrometry that the tfuA and ycaO genes of Methanosarcina acetivorans are involved in thioamidation of Gly465 in the MCR active site. Modification to thioGly has been postulated to stabilize the active site structure of MCR. Herein, we report the in vitro reconstitution of ribosomal peptide thioamidation using heterologously expressed and purified YcaO and TfuA proteins from M. acetivorans Like other reported YcaO proteins, this reaction is ATP-dependent but requires an external sulfide source. We also reconstitute the thioamidation activity of two TfuA-independent YcaOs from the hyperthermophilic methanogenic archaea Methanopyrus kandleri and Methanocaldococcus jannaschii Using these proteins, we demonstrate the basis for substrate recognition and regioselectivity of thioamide formation based on extensive mutagenesis, biochemical, and binding studies. Finally, we report nucleotide-free and nucleotide-bound crystal structures for the YcaO proteins from M. kandleri Sequence and structure-guided mutagenesis with subsequent biochemical evaluation have allowed us to assign roles for residues involved in thioamidation and confirm that the reaction proceeds via backbone O-phosphorylation. These data assign a new biochemical reaction to the YcaO superfamily and paves the way for further characterization of additional peptide backbone posttranslational modifications.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/metabolismo , Metano/biosíntesis , Proteínas Ribosómicas/metabolismo , Tioamidas/metabolismo , Archaea/genética , Proteínas Arqueales/genética , Biología Computacional , Regulación de la Expresión Génica Arqueal/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas Ribosómicas/genética , Tioamidas/química
13.
J Org Chem ; 83(14): 7514-7522, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29697256

RESUMEN

We disclose herein a Ru(II)-catalyzed decarboxylative and oxidative coupling of N-substituted indolyl carboxylic acids with broad substrate scope in an aqueous solution. This method provides a sustainable and efficient access to synthesize various indole-fused cyclohexanyl acetic acids under mild conditions.

14.
Molecules ; 23(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189635

RESUMEN

An ammonium iodide/hydrogen peroxide-mediated intramolecular oxidative amination of 3-aminoalkyl-2-oxindoles was achieved, affording the corresponding 3,2'-pyrrolidinyl spirooxindoles and their 6- or 7-membered analogous in moderate to high yields. This metal-free procedure features very mild reaction conditions, non-toxicity and easily handled hydrogen peroxide as a clean oxidant.


Asunto(s)
Peróxido de Hidrógeno/química , Yoduros/química , Oxidación-Reducción , Oxindoles/química , Catálisis , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxindoles/farmacología
15.
Alzheimers Res Ther ; 16(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167548

RESUMEN

BACKGROUND: Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. METHODS: We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. RESULTS: We identified 190 dysregulated LR interactions across six major cell types in AD PFC, of which 107 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in the astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 44 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport,' among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. CONCLUSIONS: Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transcriptoma , Estudio de Asociación del Genoma Completo , Comunicación Celular , ARN Nuclear Pequeño
16.
Epigenomes ; 8(2)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651367

RESUMEN

Alzheimer's Disease (AD) is a complex disease and the leading cause of dementia in older people. We aimed to uncover aspects of AD's pathogenesis that may contribute to drug repurposing efforts by integrating DNA methylation and genetic data. Implementing the network-based tool, a dense module search of genome-wide association studies (dmGWAS), we integrated a large-scale GWAS dataset with DNA methylation data to identify gene network modules associated with AD. Our analysis yielded 286 significant gene network modules. Notably, the foremost module included the BIN1 gene, showing the largest GWAS signal, and the GNAS gene, the most significantly hypermethylated. We conducted Web-based Cell-type-Specific Enrichment Analysis (WebCSEA) on genes within the top 10% of dmGWAS modules, highlighting monocyte as the most significant cell type (p < 5 × 10-12). Functional enrichment analysis revealed Gene Ontology Biological Process terms relevant to AD pathology (adjusted p < 0.05). Additionally, drug target enrichment identified five FDA-approved targets (p-value = 0.03) for further research. In summary, dmGWAS integration of genetic and epigenetic signals unveiled new gene interactions related to AD, offering promising avenues for future studies.

17.
J Alzheimers Dis ; 97(4): 1807-1827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306043

RESUMEN

Background: The progressive cognitive decline, an integral component of Alzheimer's disease (AD), unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and AD between different chronological points. Objective: To disentangle the normal aging effect from the AD-related accelerated cognitive decline and unravel its genetic components using a neuroimaging-based deep learning approach. Methods: We developed a deep-learning framework based on a dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results: We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G > T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neurons and plays a role in controlling cell growth and differentiation. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Conclusions: Our deep learning model effectively extracted relevant neuroimaging features and predicted individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Estudio de Asociación del Genoma Completo , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología
18.
HGG Adv ; 5(3): 100313, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38807368

RESUMEN

Orofacial clefts (OFCs) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFCs. Furthermore, several hundreds of de novo variants (DNVs) have been identified from individuals with OFCs. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest that combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.

19.
Res Sq ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37790454

RESUMEN

Background: Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional features of Alzheimer's disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding intercellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains. Methods: We systematically assessed the intercellular communication networks by using a discovery snRNA-seq dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the findings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database. Results: We identified 316 dysregulated LR interactions across six major cell types in AD PFC, of which 210 pairs were replicated. Among the replicated LR signals, we found globally downregulated communications in astrocytes-to-neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 60 GO terms significantly linked to AD, highlighting Biological Processes such as 'amyloid precursor protein processing' and 'ion transmembrane transport', among others. We prioritized several drug repurposing candidates, such as cromoglicate, targeting the identified dysregulated LR pairs. Conclusions: Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted cell-cell communication in AD.

20.
Environ Sci Pollut Res Int ; 30(27): 70760-70770, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37155104

RESUMEN

Our previous study indicated excellent dechlorination efficiency and phenol conversion rate in the electrocatalytic reduction of 2,4-dichlorophenol (2,4-DCP) with a Pd-MWCNTs/Ni-foam electrode; it is deserved to investigate whether this electrode can efficiently degrade phenol in electro-Fenton oxidation (EFO) process and realize the effective mineralization of 2,4-DCP in aqueous solution. In this work, the sequential electrocatalytic reduction and oxidation of 2,4-DCP were studied after examining phenol degradation in the EFO process. The results showed that the removal efficiency of 0.31 mM phenol could reach 96.76% after 90-min degradation with the rate constant of 0.0367 min-1, and hydroxy radicals (·OH) were the main active species in the EFO process. In the sequential electrocatalytic reduction and oxidation processes, the removal efficiencies of 2,4-DCP, phenol, and total organic carbon (TOC) reached 99.72%, 97.07%, and 61.45%, respectively. The possible degradation mechanism of 2,4-DCP was proposed through monitoring the reaction products, and the stability and reusability of the electrode were also examined. This study suggested that 2,4-DCP in wastewater can be effectively mineralized to realize its efficient degradation through the sequential electrocatalytic reduction and oxidation.


Asunto(s)
Clorofenoles , Contaminantes Químicos del Agua , Agua , Fenoles , Oxidación-Reducción , Fenol , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA