Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202574

RESUMEN

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Asunto(s)
GTP Fosfohidrolasas , Transducción de Señal , Animales , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/metabolismo , Nucleótidos , Proteínas
2.
Proc Natl Acad Sci U S A ; 121(28): e2319718121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954545

RESUMEN

Standard deep learning algorithms require differentiating large nonlinear networks, a process that is slow and power-hungry. Electronic contrastive local learning networks (CLLNs) offer potentially fast, efficient, and fault-tolerant hardware for analog machine learning, but existing implementations are linear, severely limiting their capabilities. These systems differ significantly from artificial neural networks as well as the brain, so the feasibility and utility of incorporating nonlinear elements have not been explored. Here, we introduce a nonlinear CLLN-an analog electronic network made of self-adjusting nonlinear resistive elements based on transistors. We demonstrate that the system learns tasks unachievable in linear systems, including XOR (exclusive or) and nonlinear regression, without a computer. We find our decentralized system reduces modes of training error in order (mean, slope, curvature), similar to spectral bias in artificial neural networks. The circuitry is robust to damage, retrainable in seconds, and performs learned tasks in microseconds while dissipating only picojoules of energy across each transistor. This suggests enormous potential for fast, low-power computing in edge systems like sensors, robotic controllers, and medical devices, as well as manufacturability at scale for performing and studying emergent learning.

3.
Proc Natl Acad Sci U S A ; 120(34): e2304974120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585468

RESUMEN

Under a sufficiently large load, a solid material will flow via rearrangements, where particles change neighbors. Such plasticity is most easily described in the athermal, quasistatic limit of zero temperature and infinitesimal loading rate, where rearrangements occur only when the system becomes mechanically unstable. For disordered solids, the instabilities marking the onset of rearrangements have long been believed to be fold instabilities, in which an energy barrier disappears and the frequency of a normal mode of vibration vanishes continuously. Here, we report that there exists another, anomalous, type of instability caused by the breaking of a "stabilizing bond," whose removal creates an unstable vibrational mode. For commonly studied systems, such as those with harmonic finite-range interparticle interactions, such "discontinuous instabilities" are not only inevitable, they often dominate the modes of failure. Stabilizing bonds are a subset of all the bonds in the system and are prevalent in disordered solids generally. Although they do not trigger discontinuous instabilities in systems with vanishing stiffness at the interaction cutoff, they are, even in those cases, local indicators of incipient mechanical failure. They therefore provide an accurate structural predictor of instabilities not only of the discontinuous type but of the fold type as well.

4.
Proc Natl Acad Sci U S A ; 120(42): e2307552120, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812709

RESUMEN

There are empirical strategies for tuning the degree of strain localization in disordered solids, but they are system-specific and no theoretical framework explains their effectiveness or limitations. Here, we study three model disordered solids: a simulated atomic glass, an experimental granular packing, and a simulated polymer glass. We tune each system using a different strategy to exhibit two different degrees of strain localization. In tandem, we construct structuro-elastoplastic (StEP) models, which reduce descriptions of the systems to a few microscopic features that control strain localization, using a machine learning-based descriptor, softness, to represent the stability of the disordered local structure. The models are based on calculated correlations of softness and rearrangements. Without additional parameters, the models exhibit semiquantitative agreement with observed stress-strain curves and softness statistics for all systems studied. Moreover, the StEP models reveal that initial structure, the near-field effect of rearrangements on local structure, and rearrangement size, respectively, are responsible for the changes in ductility observed in the three systems. Thus, StEP models provide microscopic understanding of how strain localization depends on the interplay of structure, plasticity, and elasticity.

5.
Proc Natl Acad Sci U S A ; 119(16): e2119006119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412897

RESUMEN

In frictionless jammed packings, existing evidence suggests a picture in which localized physics dominates in low spatial dimensions, d = 2, 3, but quickly loses relevance as d rises, replaced by spatially extended mean-field behavior. For example, quasilocalized low-energy vibrational modes and low-coordination particles associated with deviation from mean-field behavior (rattlers and bucklers) all vanish rapidly with increasing d. These results suggest that localized rearrangements, which are associated with low-energy vibrational modes, correlated with local structure, and dominant in low dimensions, should give way in higher d to extended rearrangements uncorrelated with local structure. Here, we use machine learning to analyze simulations of jammed packings under athermal, quasistatic shear, identifying a local structural variable, softness, that correlates with rearrangements in dimensions d = 2 to d = 5. We find that softness­and even just the local coordination number Z­is essentially equally predictive of rearrangements in all d studied. This result provides direct evidence that local structure plays an important role in higher d, suggesting a modified picture for the dimensional cross-over to mean-field theory.

6.
Proc Natl Acad Sci U S A ; 119(19): e2117622119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35512090

RESUMEN

SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.

7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34810266

RESUMEN

Physicochemical principles such as stoichiometry and fractal assembly can give rise to characteristic scaling between components that potentially include coexpressed transcripts. For key structural factors within the nucleus and extracellular matrix, we discover specific gene-gene scaling exponents across many of the 32 tumor types in The Cancer Genome Atlas, and we demonstrate utility in predicting patient survival as well as scaling-informed machine learning (SIML). All tumors with adjacent tissue data show cancer-elevated proliferation genes, with some genes scaling with the nuclear filament LMNB1, including the transcription factor FOXM1 that we show directly regulates LMNB1 SIML shows that such regulated cancers cluster together with longer overall survival than dysregulated cancers, but high LMNB1 and FOXM1 in half of regulated cancers surprisingly predict poor survival, including for liver cancer. COL1A1 is also studied because it too increases in tumors, and a pan-cancer set of fibrosis genes shows substoichiometric scaling with COL1A1 but predicts patient outcome only for liver cancer-unexpectedly being prosurvival. Single-cell RNA-seq data show nontrivial scaling consistent with power laws from bulk RNA and protein analyses, and SIML segregates synthetic from contractile cancer fibroblasts. Our scaling approach thus yields fundamentals-based power laws relatable to survival, gene function, and experiments.


Asunto(s)
Fibrosis/metabolismo , Lamina Tipo B/química , Neoplasias Hepáticas/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Colágeno/química , Biología Computacional , ADN/metabolismo , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/genética , Espectrometría de Masas , Neoplasias/metabolismo , Oncogenes , Pronóstico , Proteómica/métodos , Estrés Mecánico , Transcriptoma , Resultado del Tratamiento
8.
Proc Natl Acad Sci U S A ; 117(50): 31690-31695, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257582

RESUMEN

We consider disordered solids in which the microscopic elements can deform plastically in response to stresses on them. We show that by driving the system periodically, this plasticity can be exploited to train in desired elastic properties, both in the global moduli and in local "allosteric" interactions. Periodic driving can couple an applied "source" strain to a "target" strain over a path in the energy landscape. This coupling allows control of the system's response, even at large strains well into the nonlinear regime, where it can be difficult to achieve control simply by design.

9.
Phys Rev Lett ; 128(24): 248001, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776474

RESUMEN

To search for experimental signals of the Gardner crossover, an active quasithermal granular glass is constructed using a monolayer of air-fluidized star-shaped particles. The pressure of the system is controlled by adjusting the tension exerted on an enclosing boundary. Velocity distributions of the internal particles and the scaling of the pressure, density, effective temperature, and relaxation time are examined, demonstrating that the system has key features of a thermal system. Using a pressure-based quenching protocol that brings the system into deeper glassy states, signals of the Gardner crossover are detected via cage size and separation order parameters for both particle positions and orientations, offering experimental evidence of Gardner physics for a system of anisotropic quasithermal particles in a low spatial dimension.

10.
J Chem Phys ; 157(12): 124501, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36182409

RESUMEN

The rapid rise of viscosity or relaxation time upon supercooling is a universal hallmark of glassy liquids. The temperature dependence of viscosity, however, is quite nonuniversal for glassy liquids and is characterized by the system's "fragility," with liquids with nearly Arrhenius temperature-dependent relaxation times referred to as strong liquids and those with super-Arrhenius behavior referred to as fragile liquids. What makes some liquids strong and others fragile is still not well understood. Here, we explore this question in a family of harmonic spheres that range from extremely strong to extremely fragile, using "softness," a structural order parameter identified by machine learning to be highly correlated with dynamical rearrangements. We use a support vector machine to identify softness as the same linear combination of structural quantities across the entire family of liquids studied. We then use softness to identify the factors controlling fragility.

11.
Proc Natl Acad Sci U S A ; 116(7): 2506-2511, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30679270

RESUMEN

Nature is rife with networks that are functionally optimized to propagate inputs to perform specific tasks. Whether via genetic evolution or dynamic adaptation, many networks create functionality by locally tuning interactions between nodes. Here we explore this behavior in two contexts: strain propagation in mechanical networks and pressure redistribution in flow networks. By adding and removing links, we are able to optimize both types of networks to perform specific functions. We define a single function as a tuned response of a single "target" link when another, predetermined part of the network is activated. Using network structures generated via such optimization, we investigate how many simultaneous functions such networks can be programed to fulfill. We find that both flow and mechanical networks display qualitatively similar phase transitions in the number of targets that can be tuned, along with the same robust finite-size scaling behavior. We discuss how these properties can be understood in the context of constraint-satisfaction problems.

12.
Phys Rev Lett ; 126(2): 028102, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512186

RESUMEN

The ability to reroute and control flow is vital to the function of venation networks across a wide range of organisms. By modifying individual edges in these networks, either by adjusting edge conductances or creating and destroying edges, organisms robustly control the propagation of inputs to perform specific tasks. However, a fundamental disconnect exists between the structure and function: networks with different local architectures can perform the same functions. Here, we answer the question of how changes at the level of individual edges collectively create functionality at the scale of an entire network. Using persistent homology, we analyze networks tuned to perform complex tasks. We find that the responses of such networks encode a hidden topological structure composed of sectors of nearly uniform pressure. Although these sectors are not apparent in the underlying network structure, they correlate strongly with the tuned function. The connectivity of these sectors, rather than that of individual nodes, provides a quantitative relationship between structure and function in flow networks.


Asunto(s)
Microvasos , Modelos Biológicos , Animales , Relación Estructura-Actividad
13.
Phys Rev Lett ; 127(4): 048002, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355934

RESUMEN

As liquids approach the glass transition temperature, dynamical heterogeneity emerges as a crucial universal feature of their behavior. Dynamic facilitation, where local motion triggers further motion nearby, plays a major role in this phenomenon. Here we show that long-ranged, elastically mediated facilitation appears below the mode coupling temperature, adding to the short-range component present at all temperatures. Our results suggest deep connections between the supercooled liquid and glass states, and pave the way for a deeper understanding of dynamical heterogeneity in glassy systems.

14.
Soft Matter ; 17(45): 10242-10253, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33463648

RESUMEN

Machine learning techniques have been used to quantify the relationship between local structural features and variations in local dynamical activity in disordered glass-forming materials. To date these methods have been applied to an array of standard (Arrhenius and super-Arrhenius) glass formers, where work on "soft spots" indicates a connection between the linear vibrational response of a configuration and the energy barriers to non-linear deformations. Here we study the Voronoi model, which takes its inspiration from dense epithelial monolayers and which displays anomalous, sub-Arrhenius scaling of its dynamical relaxation time with decreasing temperature. Despite these differences, we find that the likelihood of rearrangements can nevertheless vary by several orders of magnitude within the model tissue and extract a local structural quantity, "softness," that accurately predicts the temperature dependence of the relaxation time. We use an information-theoretic measure to quantify the extent to which softness determines impending topological rearrangements; we find that softness captures nearly all of the information about rearrangements that is obtainable from structure, and that this information is large in the solid phase of the model and decreases rapidly as state variables are varied into the fluid phase.


Asunto(s)
Vidrio , Temperatura
15.
Proc Natl Acad Sci U S A ; 115(43): 10943-10947, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301794

RESUMEN

In polycrystalline materials, grain boundaries are sites of enhanced atomic motion, but the complexity of the atomic structures within a grain boundary network makes it difficult to link the structure and atomic dynamics. Here, we use a machine learning technique to establish a connection between local structure and dynamics of these materials. Following previous work on bulk glassy materials, we define a purely structural quantity (softness) that captures the propensity of an atom to rearrange. This approach correctly identifies crystalline regions, stacking faults, and twin boundaries as having low likelihood of atomic rearrangements while finding a large variability within high-energy grain boundaries. As has been found in glasses, the probability that atoms of a given softness will rearrange is nearly Arrhenius. This indicates a well-defined energy barrier as well as a well-defined prefactor for the Arrhenius form for atoms of a given softness. The decrease in the prefactor for low-softness atoms indicates that variations in entropy exhibit a dominant influence on the atomic dynamics in grain boundaries.

16.
Proc Natl Acad Sci U S A ; 115(7): E1384-E1390, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382758

RESUMEN

Recent theoretical work suggests that systematic pruning of disordered networks consisting of nodes connected by springs can lead to materials that exhibit a host of unusual mechanical properties. In particular, global properties such as Poisson's ratio or local responses related to deformation can be precisely altered. Tunable mechanical responses would be useful in areas ranging from impact mitigation to robotics and, more generally, for creation of metamaterials with engineered properties. However, experimental attempts to create auxetic materials based on pruning-based theoretical ideas have not been successful. Here we introduce a more realistic model of the networks, which incorporates angle-bending forces and the appropriate experimental boundary conditions. A sequential pruning strategy of select bonds in this model is then devised and implemented that enables engineering of specific mechanical behaviors upon deformation, both in the linear and in the nonlinear regimes. In particular, it is shown that Poisson's ratio can be tuned to arbitrary values. The model and concepts discussed here are validated by preparing physical realizations of the networks designed in this manner, which are produced by laser cutting 2D sheets and are found to behave as predicted. Furthermore, by relying on optimization algorithms, we exploit the networks' susceptibility to tuning to design networks that possess a distribution of stiffer and more compliant bonds and whose auxetic behavior is even greater than that of homogeneous networks. Taken together, the findings reported here serve to establish that pruned networks represent a promising platform for the creation of unique mechanical metamaterials.

17.
Invest New Drugs ; 38(6): 1677-1686, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32436058

RESUMEN

Children with aggressive pediatric solid tumors have poor outcomes and novel treatments are needed. Pediatric solid tumors demonstrate aberrant expression and activity of the fibroblast growth factor receptor (FGFR) family, suggesting FGFR inhibitors may be effective therapeutic agents. AZD4547 is a multikinase inhibitor of the FGFR1-3 kinases, and we hypothesized that AZD4547 would be effective in pediatric solid tumor preclinical models. We evaluated the effects of AZD4547 on neuroblastoma, rhabdomyosarcoma, and Ewing sarcoma cells alone and in combination with STAT3 inhibition. Continuous live cell imaging was used to measure induction of apoptosis and effects on migration. Receptor inhibition and intracellular signaling were examined by western blotting. AZD4547 treatment resulted in decreased cell confluence, increased apoptosis and reduced cell migration in all tested cell lines. AZD4547 treatment led to decreased phosphorylation of signaling proteins involved in cell survival and apoptotic pathways and increased phosphorylation of STAT3, and treatment of cell lines with AZD4547 combined with STAT3 inhibition demonstrated increased efficacy. Sensitivity to AZD4547 appears to be mediated by effects on the Ras/MAPK and JAK/STAT pathways, and AZD4547 represents a potential novel therapeutic agent for children with solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Neoplasias/metabolismo , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Niño , Óxidos S-Cíclicos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 114(40): 10601-10605, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28928147

RESUMEN

Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film.

19.
Proc Natl Acad Sci U S A ; 114(2): 263-267, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028217

RESUMEN

The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called "softness," a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.

20.
Proc Natl Acad Sci U S A ; 114(10): 2520-2525, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223534

RESUMEN

Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds. We are also able to control multiple pairs of target nodes, each with a different individual response, from a single source, and to tune multiple independent source/target responses simultaneously into a network. We have fabricated physical networks in macroscopic 2D and 3D systems that exhibit these responses. This work is inspired by the long-range coupled conformational changes that constitute allosteric function in proteins. The fact that allostery is a common means for regulation in biological molecules suggests that it is a relatively easy property to develop through evolution. In analogy, our results show that long-range coupled mechanical responses are similarly easy to achieve in disordered networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA