RESUMEN
BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.
Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Arabidopsis/genética , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genéticaRESUMEN
BACKGROUND: Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS: The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION: The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.
Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Resistencia a la Sequía , Zea mays/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genéticaRESUMEN
Polyethylene microplastics (PE-MPs) have been widely reported for their adverse effects on soil ecosystems. However, there are fewer field studies on addressing PE-MPs contamination in soil. This study investigated the effects of PE-MPs on soil properties, rhizosphere soil microorganisms, and pea (Pisum sativum L.) nutrient composition in a field experiment and mitigated the effects of PE-MPs by adding MPs-degrading bacteria. The results showed that the addition of MPs-degrading bacteria mitigated the effects of PE-MPs on the hydrolyzable nitrogen content in the soil. In addition, the introduction of MPs-degrading bacteria resulted in an increase in the Shannon indices of microorganisms in the soil. This also effectively regulates the structure of the soil microbial community to be closest to that of normal soil. Notably, the addition of MPs-degrading bacteria increased the protein, starch, cellulose, and chlorophyll contents of pea grains. This study demonstrated the ability to improve the nutrient content of peas affected by MPs by adding MPs-degrading bacteria. This study contributes to our understanding of the effects of PE-MPs on soil-microbe-plant systems and provides new insights into the bioremediation of PE-MPs in agricultural soils.
RESUMEN
KEY MESSAGE: A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.
Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Mapeo Cromosómico , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Hojas de la PlantaRESUMEN
To avoid the unregulated overexpression of the exogenous genes, specific or inducible expression is necessary for some exogenous genes in transgenic plants. But little is known about organ- or tissue-specific promoters in maize. In the present study, the expression of a maize pentatricopeptide repeat (PPR) protein encoding gene, GRMZM2G129783, was analyzed by RNA-sequencing data and confirmed by quantitative real time PCR. The results showed that the PPR GRMZM2G129783 gene specifically expressed in vegetative organs. Consequently, a 1830 bp sequence upstream of the start codon of the promoter for GRMZM2G129783 gene was isolated from maize genome (P 1830 ). To validate whether the promoter possesses the vegetative organ-specificity, the full-length and three 5'-end deletion fragments of P 1830 of different length (1387, 437, and 146 bp) were fused with glucuronidase (GUS) gene to generate promoter::GUS constructs and transformed into tobacco. The transient expression and fluorometric GUS assay in transgenic tobacco showed that all promoter could drive the expression of the GUS gene, the - 437 to - 146 bp region possessed some crucial elements for root-specific expression, and the shortest and optimal sequence to maintain transcription activity was 146 and 437 bp in length, respectively. These results indicate that the promoter of the PPR GRMZM2G129783 gene is a vegetative organ-specific promoter and will be useful in transgenic modification of commercial crops for moderate specific expression after further evaluation in monocotyledons.
RESUMEN
BACKGROUND: Polyploidy is considered a major driving force in genome expansion, yielding duplicated genes whose expression may be conserved or divergence as a consequence of polyploidization. RESULTS: We compared the genome sequences of tetraploid cotton (Gossypium hirsutum) and its two diploid progenitors, G. arboreum and G. raimondii, and found that the bHLH genes were conserved over the polyploidization. Oppositely, the expression of the homeolgous gene pairs was diversified. The biased homeologous proportion for bHLH family is significantly higher (64.6%) than the genome wide homeologous expression bias (40%). Compared with cacao (T. cacao), orthologous genes only accounted for a small proportion (41.7%) of whole cotton bHLHs family. The further Ks analysis indicated that bHLH genes underwent at least two distinct episodes of whole genome duplication: a recent duplication (1.0-60.0 million years ago, MYA, 0.005 < Ks < 0.312) and an old duplication (> 60.0 MYA, 0.312 < Ks < 3.0). The old duplication event might have played a key role in the expansion of the bHLH family. Both recent and old duplicated pairs (68.8%) showed a divergent expression profile, indicating specialized functions. The expression diversification of the duplicated genes suggested it might be a universal feature of the long-term evolution of cotton. CONCLUSIONS: Overview of cotton bHLH proteins indicated a conserved and divergent evolution from diploids to allotetraploid. Our results provided an excellent example for studying the long-term evolution of polyploidy.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Plantas/genética , Diploidia , Poliploidía , TetraploidíaRESUMEN
In cotton, the formation of fruiting branches affects both plant architecture and fiber yield. Here, we report map-based cloning of the axillary flowering mutation gene (GbAF) that causes bolls to be borne directly on the main plant stem in Gossypium barbadense, and of the clustered boll mutation gene (cl1) in G. hirsutum. Both mutant alleles were found to represent point mutations at the Cl1 locus. Therefore, we propose that the GbAF mutation be referred to as cl1b. These Cl1 loci correspond to homologs of tomato SELF-PRUNING (SP), i.e. Gossypium spp. SP (GoSP) genes. In tetraploid cottons, single monogenic mutation of either duplicate GoSP gene (one in the A and one in the D subgenome) is associated with the axillary cluster flowering phenotype, although the shoot-indeterminate state of the inflorescence is maintained. By contrast, silencing of both GoSPs leads to the termination of flowering or determinate plants. The architecture of axillary flowering cotton allows higher planting density, contributing to increased fiber yield. Taken together the results provide new insights into the underlying mechanism of branching in cotton species, and characterization of GoSP genes may promote the development of compact cultivars to increase global cotton production.
Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , Proteínas de Plantas/genética , Gossypium/metabolismo , Mutación , Proteínas de Plantas/metabolismoRESUMEN
Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton.
Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , ARN sin Sentido/genética , Gossypium/crecimiento & desarrollo , Gossypium/ultraestructura , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , División del ARN , ARN de Planta/genética , ARN Interferente Pequeño , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/ultraestructura , Análisis de Secuencia de ARNRESUMEN
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
RESUMEN
Mulberry perishes easily due to its high water content and thin skin. It is important to extend the shelf life of mulberry by proper processing methods. In the present study, the influence of three drying techniques, including hot air drying (HAD), vacuum drying (VD), and vacuum freeze-drying (VFD) on the quality maintenance of mulberry was comprehensively evaluated. Bioactive compounds, antioxidant activity, and the sensory and volatile flavor compounds of mulberry have been researched. The results showed that VFD treatment maintained the highest anthocyanins (6.99 mg/g), total flavones (3.18 mg/g), and soluble sugars (2.94 mg/g), and exhibited the best DPPH· (81.2%) and ABTS+· (79.9%) scavenging ability. Mulberry also presented the lowest hardness and the greatest brittleness after VFD. Additionally, VFD maintained the optimal color and presented the best sensory attributes. Furthermore, 30, 20, and 32 kinds of volatile flavor compounds were detected in HAD, VD, and VFD, respectively, among which aldehydes, esters, and ketones were the most abundant compounds. This study indicated the potential application value of VFD for the drying of fruit and vegetable foodstuffs.
RESUMEN
The untranslated regions (UTRs) within plant mRNAs play crucial roles in regulating gene expression and the functionality of post-translationally modified proteins by various mechanisms. These regions are vital for plants' ability to sense to multiple developmental and environmental stimuli. In this study, we conducted a genome-wide analysis of UTRs and UTR-containing genes in maize (Zea mays). Using the ZmLAZ1 family as a case study, we demonstrated that the length of 5' UTRs could influence gene expression levels by employing GUS reporter gene assays. Although maize and arabidopsis (Arabidopsis thaliana), as well as rice (Oryza sativa), have distinct functional categories of UTR-containing genes, we observed a similar lengthwise distribution of UTRs and a recurring appearance of certain gene ontology (GO) terms between maize and rice. These suggest a potentially conserved mechanism within the Poaceae species. Furthermore, the analysis of cis-acting elements in these 5' UTRs of the ZmLAZ1 gene family further supports the hypothesis that UTRs confer functional specificity to genes in a length-dependent manner. Our findings offer novel insights into the role of UTRs in maize, contributing to the broader understanding of gene expression regulation in plants.
Asunto(s)
Regiones no Traducidas 5' , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Regiones no Traducidas 5'/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Familia de Multigenes , Arabidopsis/genéticaRESUMEN
Cultural identity is of great significance to the formation of group consensus and the establishment of cultural self-confidence. In order to understand the history, current situation and trend, and provide theoretical support for future research, this paper makes a quantitative analysis of knowledge map including annual publication volume, trend, distribution of authors and institutions, co-occurrence, clustering and timeline of keywords as well as emergent keywords on the literature concerning ethnic cultural identity published in "Web of Science" database for a period from 2012 to 2022, with CiteSpace software as a tool. The results show an overall upward trend with diversified ethnic and regional characteristics; major institutions including universities of the U.S., the U.K., Australia, China and other countries and regions engage in their research from different disciplines such as psychology, sociology, ethnology and education; the researchers have not formed a core group of authors despite their accumulating number; research hotspots are indicated by keywords such as national identity, identity, ethnic identity and attitude; specifically, keyword clusters fall into three categories: emotional perception, multicultural identity process and ethnic cultural adaptability; researchers probe into various issues at different stages with direct relation to international situations and regional cultures. This study has positive implications for understanding and mastering the current research hotspots and development trends of ethnic cultural identity in the world.
RESUMEN
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an important pseudocereal crop with excellent edible, nutritional and medicinal values. However, the yield of Tartary buckwheat (TB) is very low due to old-fashioned cultivation techniques, particularly unreasonable application of nitrogen fertilizer. To improve the understanding on the theories of nitrogen use in TB, the effects of nitrogen application on growth, as well as chemical properties and microbial community of rhizosphere soil were investigated in this study. Nitrogen application could promote the plant height, stem diameter, nitrogen accumulation and yield of TB. The relative abundance and diversity of bacteria and fungi in the rhizosphere soil of TB were improved by nitrogen fertilizer. Nitrogen application increased the abundance of beneficial bacteria such as Lysobacter and Sphingomonas in rhizosphere soil, and decreased the abundance of pathogenic fungi such as Fusarium and Plectosphaerella. The results indicated that nitrogen application changed the distribution of microbial communities in TB rhizosphere soil. Furthermore, the specific enriched or depleted microorganisms in the rhizosphere soil of four TB varieties were analyzed at OTU level. 87 specific nitrogen-responsive genes with sequence variation were identified in four varieties by integrating genomic re-sequencing and transcriptome analysis, and these genes may involve in the recruitment of specific rhizosphere microorganisms in different TB varieties. This study provided new insights into the effects of nitrogen application on TB growth and rhizosphere microbial community, and improved the understanding on the mechanisms of TB root-microbe interactions.
RESUMEN
Gossypium hirsutum is a high yield cotton species that exhibits only moderate performance in fiber qualities. A promising but challenging approach to improving its phenotypes is interspecific introgression, the transfer of valuable traits or genes from the germplasm of another species such as G. barbadense, an important cultivated extra long staple cotton species. One set of chromosome segment introgression lines (CSILs) was developed, where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS) in BC(5)S(14) and BC(4)S(13) generations. After four rounds of MAS, the CSIL population was comprised of 174 lines containing 298 introgressed segments, of which 86 (49.4%) lines had single introgressed segments. The total introgressed segment length covered 2,948.7 cM with an average length of 16.7 cM and represented 83.3% of tetraploid cotton genome. The CSILs were highly varied in major fiber qualities. By integrated analysis of data collected in four environments, a total of 43 additive quantitative trait loci (QTL) and six epistatic QTL associated with fiber qualities were detected by QTL IciMapping 3.0 and multi-QTL joint analysis. Six stable QTL were detected in various environments. The CSILs developed and the analyses presented here will enhance the understanding of the genetics of fiber qualities in long staple G. barbadense and facilitate further molecular breeding to improve fiber quality in Upland cotton.
Asunto(s)
Fibra de Algodón , Gossypium/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Ambiente , Epistasis Genética , Variación Genética , Genoma de Planta , Genotipo , Modelos Genéticos , Fenotipo , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADNRESUMEN
Zinc is an essential micronutrient for plant growth and development, and functions as a cofactor for hundreds of transcription factors and enzymes in numerous biological processes. Zinc deficiency is common abiotic stress resulting in yield loss and quality deterioration of crops, but zinc excess causes toxicity for biological systems. In plants, zinc homeostasis is tightly modulated by zinc transporters and binding compounds that uptake/release, transport, localize, and store zinc, as well as their upstream regulators. Lazarus 1 (LAZ1), a member of DUF300 protein family, functions as transmembrane organic solute transporter in vertebrates. However, the function of LAZ1 in plants is still obscure. In the present study, the ZmLAZ1-4 protein was confirmed to bind to zinc ions by bioinformatic prediction and thermal shift assay. Heterologous expression of ZmLAZ1-4 in the zinc-sensitive yeast mutant, Arabidopsis, and maize significantly facilitated the accumulation of Zn2+ in transgenic lines, respectively. The result of subcellular localization exhibited that ZmLAZ1-4 was localized on the plasma and vacuolar membrane, as well as chloroplast. Moreover, the ZmLAZ1-4 gene was negatively co-expressed with ZmBES1/BZR1-11 gene through co-expression and real-time quantitative PCR analysis. The results of yeast one-hybrid and dual-luciferase assay suggested that ZmBES1/BZR1-11 could bind to ZmLAZ1-4 promoter to inhibit its transcription. All results indicated that ZmLAZ1-4 was a novel zinc transporter on plasma and vacuolar membrane, and transported zinc under negative regulation of the ZmBES1/BZR1-11 transcription factor. The study provides insights into further underlying the mechanism of ZmLAZ1-4 regulating zinc homeostasis.
RESUMEN
After fiber, cottonseed is the second most important by-product of cotton production. However, high concentrations of toxic free gossypol deposited in the glands of the cottonseed greatly hamper its effective usage as food or feed. Here, we developed a cotton line with edible cottonseed by specifically silencing the endogenous expression of GoPGF in the seeds, which led to a glandless phenotype with an ultra-low gossypol content in the seeds and nearly normal gossypol in other parts of the plants. This engineered cotton maintains normal resistance to insect pests, but the gossypol content in the seeds dropped by 98%, and thus, it can be consumed directly as food. The trait of a low gossypol content in the cottonseeds was stable and heritable, while the protein, oil content, and fiber yield or quality were nearly unchanged compared to the transgenic receptor W0. In addition, comparative transcriptome analysis showed that down-regulated genes in the ovules of the glandless cotton were enriched in terpenoid biosynthesis, indicating the underlying relationship between gland formation and gossypol biosynthesis. These results pave the way for the comprehensive utilization of cotton as a fiber, oil, and feed crop in the future.
RESUMEN
Glutinous rice can be applied to many fields including brewing industry, medicine, cosmetics and food processing. However, we know very little about the basic metabolite information of glutinous rice. In this study, we identified the phenol and flavonoid metabolites in purple glutinous rice and white glutinous rice, and elucidated the relationship between metabolites and total antioxidant capacity. The results demonstrated that flavonoids contents, oligomeric proanthocyanidin contents and total antioxidant capacity of purple glutinous rice were significantly higher than those of white glutinous rice. We identified 390 differential metabolites between the purple glutinous rice and white glutinous rice by LC-MS metabolomics. Correlation analysis results showed that flavonoid and phenol metabolites contents were strongly correlated with total antioxidant capacity. This study further clarified that the pantothenic acid, pebrellin, l-glutamic acid, eupatilin, diosmin, and diosmetin could be used as candidate metabolite markers for antioxidant capacity screening in glutinous rice grains.
Asunto(s)
Antioxidantes , Oryza , Antioxidantes/química , Flavonoides/análisis , Metabolómica , Oryza/química , Fenoles/análisisRESUMEN
Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. The overall genetic diversity among cultivated species of cotton and the genetic changes that occurred during their improvement are poorly understood. Here we report a comprehensive genomic assessment of modern improved upland cotton based on the genome-wide resequencing of 318 landraces and modern improved cultivars or lines. We detected more associated loci for lint yield than for fiber quality, which suggests that lint yield has stronger selection signatures than other traits. We found that two ethylene-pathway-related genes were associated with increased lint yield in improved cultivars. We evaluated the population frequency of each elite allele in historically released cultivar groups and found that 54.8% of the elite genome-wide association study (GWAS) alleles detected were transferred from three founder landraces: Deltapine 15, Stoneville 2B and Uganda Mian. Our results provide a genomic basis for improving cotton cultivars and for further evolutionary analysis of polyploid crops.
Asunto(s)
Fibra de Algodón , Genoma de Planta , Gossypium/genética , Américas , Asia , China , Fibra de Algodón/normas , Domesticación , Genes de Plantas , Pleiotropía Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Gossypium/clasificación , Gossypium/crecimiento & desarrollo , Haplotipos , Filogenia , Fitomejoramiento , Ploidias , Polimorfismo de Nucleótido Simple , Selección GenéticaRESUMEN
BACKGROUND: Cotton has been cultivated and used to make fabrics for at least 7000 years. Two allotetraploid species of great commercial importance, Gossypium hirsutum and Gossypium barbadense, were domesticated after polyploidization and are cultivated worldwide. Although the overall genetic diversity between these two cultivated species has been studied with limited accessions, their population structure and genetic variations remain largely unknown. RESULTS: We resequence the genomes of 147 cotton accessions, including diverse wild relatives, landraces, and modern cultivars, and construct a comprehensive variation map to provide genomic insights into the divergence and dual domestication of these two important cultivated tetraploid cotton species. Phylogenetic analysis shows two divergent groups for G. hirsutum and G. barbadense, suggesting a dual domestication processes in tetraploid cottons. In spite of the strong genetic divergence, a small number of interspecific reciprocal introgression events are found between these species and the introgression pattern is significantly biased towards the gene flow from G. hirsutum into G. barbadense. We identify selective sweeps, some of which are associated with relatively highly expressed genes for fiber development and seed germination. CONCLUSIONS: We report a comprehensive analysis of the evolution and domestication history of allotetraploid cottons based on the whole genomic variation between G. hirsutum and G. barbadense and between wild accessions and modern cultivars. These results provide genomic bases for improving cotton production and for further evolution analysis of polyploid crops.
Asunto(s)
Domesticación , Genoma de Planta , Genómica , Gossypium/genética , Tetraploidía , Adaptación Biológica , Cromosomas de las Plantas , Evolución Molecular , Perfilación de la Expresión Génica , Variación Genética , Genética de Población , Genómica/métodos , Genotipo , Gossypium/clasificación , Mutación INDEL , Filogenia , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Selección GenéticaRESUMEN
In higher plants, Heat Shock Protein 20 (Hsp20) plays crucial roles in growth, development and responses to abiotic stresses. In this study, 94 GhHsp20 genes were identified in G. hirsutum, and these genes were phylogenetically clustered into 14 subfamilies. Out of these, 73 paralogous gene pairs remained in conserved positions on segmental duplicated blocks and only 14 genes clustered into seven tandem duplication event regions. Transcriptome analysis showed that 82 GhHsp20 genes were expressed in at least one tested tissues, indicating that the GhHsp20 genes were involved in physiological and developmental processes of cotton. Further, expression profiles under abiotic stress exhibited that two-thirds of the GhHsp20 genes were responsive to heat stress, while 15 genes were induced by multiple stresses. In addition, qRT-PCR confirmed that 16 GhHsp20 genes were hot-induced, and eight genes were up-regulated under multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding the complex mechanisms of GhHsp20 mediated developmental processes and abiotic stress signaling transduction pathways in cotton.