Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396335

RESUMEN

Acetic acid is a prevalent inhibitor in lignocellulosic hydrolysate, which represses microbial growth and bioproduction. Histone modification and chromatin remodeling have been revealed to be critical for regulating eukaryotic metabolism. However, related studies in chronic acetic acid stress responses remain unclear. Our previous studies revealed that overexpression of the histone H4 methyltransferase Set5p enhanced acetic acid stress tolerance of the budding yeast Saccharomyces cerevisiae. In this study, we examined the role of Set5p in acetic acid stress by analyzing global protein expression. Significant activation of intracellular protein expression under the stress was discovered, and the functions of the differential proteins were mainly involved in chromatin modification, signal transduction, and carbohydrate metabolism. Notably, a substantial increase of Set5p expression was observed in response to acetic acid stress. Functional studies demonstrated that the restriction of the telomere capping protein Rtc3p, as well as Ies3p and Taf14p, which are related to chromatin regulation, was critical for yeast stress response. This study enriches the understanding of the epigenetic regulatory mechanisms underlying yeast stress response mediated by histone-modifying enzymes. The results also benefit the development of robust yeast strains for lignocellulosic bioconversion.

2.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35511110

RESUMEN

BACKGROUND: The long reads of the third-generation sequencing significantly benefit the quality of the de novo genome assembly. However, its relatively high single-base error rate has been criticized. Currently, sequencing accuracy and throughput continue to improve, and many advanced tools are constantly emerging. PacBio HiFi sequencing and Oxford Nanopore Technologies (ONT) PromethION are two up-to-date platforms with low error rates and ultralong high-throughput reads. Therefore, it is urgently needed to select the appropriate sequencing platforms, depths and genome assembly tools for high-quality genomes in the era of explosive data production. METHODS: We performed 455 (7 assemblers with 4 polishing pipelines or without polishing on 13 subsets with different depths) and 88 (4 assemblers with or without polishing on 11 subsets with different depths) de novo assemblies of Yeast S288C on high-coverage ONT and HiFi datasets, respectively. The assembly quality was evaluated by Quality Assessment Tool (QUAST), Benchmarking Universal Single-Copy Orthologs (BUSCO) and the newly proposed Comprehensive_score (C_score). In addition, we applied four preferable pipelines to assemble the genome of nonreference yeast strains. RESULTS: The assembler plays an essential role in genome construction, especially for low-depth datasets. For ONT datasets, Flye is superior to other tools through C_score evaluation. Polishing by Pilon and Medaka improve accuracy and continuity of the preassemblies, respectively, and their combination pipeline worked well in most quality metrics. For HiFi datasets, Flye and NextDenovo performed better than other tools, and polishing is also necessary. Enough data depth is required for high-quality genome construction by ONT (>80X) and HiFi (>20X) datasets.


Asunto(s)
Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharomyces cerevisiae , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos
3.
Metab Eng ; 84: 117-127, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901555

RESUMEN

Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency Corynebacterium glutamicum cell factory. Heterologous xylose pathway expression in C. glutamicum resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including pck, pyc, ppc, and aceE deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain C. glutamicum m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.

4.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592508

RESUMEN

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Asunto(s)
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilación de la Expresión Génica , Transcriptoma
5.
Biotechnol Bioeng ; 120(11): 3234-3243, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526330

RESUMEN

Zymomonas mobilis is an emerging chassis for being engineered to produce bulk products due to its unique glycolysis through the Entner-Doudoroff pathway with less ATP produced for lower biomass accumulation and higher product yield. When self-flocculated, the bacterial cells are more productive, since they can self-immobilize within bioreactors for high density, and are more tolerant to stresses for higher product titers, but this morphology needs to be controlled properly to avoid internal mass transfer limitation associated with their strong self-flocculation. Herewith we explored the regulation of cyclic diguanosine monophosphate (c-di-GMP) on self-flocculation of the bacterial cells through activating cellulose biosynthesis. While ZMO1365 and ZMO0919 with GGDEF domains for diguanylate cyclase activity catalyze c-di-GMP biosynthesis, ZMO1487 with an EAL domain for phosphodiesterase activity catalyzes c-di-GMP degradation, but ZMO1055 and ZMO0401 contain the dual domains with phosphodiesterase activity predominated. Since c-di-GMP is synthesized from GTP, the intracellular accumulation of this signal molecule through deactivating phosphodiesterase activity is preferred for activating cellulose biosynthesis to flocculate the bacterial cells, because such a strategy exerts less perturbance on intracellular processes regulated by GTP. These discoveries are significant for not only engineering unicellular Z. mobilis strains with the self-flocculating morphology to boost production but also understanding mechanism underlying c-di-GMP biosynthesis and degradation in the bacterium.

6.
Pharmacol Res ; 191: 106756, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019192

RESUMEN

Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Inmunidad Innata , Comunicación Celular
7.
Appl Environ Microbiol ; 88(9): e0239821, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35465724

RESUMEN

Zymomonas mobilis metabolizes sugar anaerobically through the Entner-Doudoroff pathway with less ATP generated for lower biomass accumulation to direct more sugar for product formation with improved yield, making it a suitable host to be engineered as microbial cell factories for producing bulk commodities with major costs from feedstock consumption. Self-flocculation of the bacterial cells presents many advantages, such as enhanced tolerance to environmental stresses, a prerequisite for achieving high product titers by using concentrated substrates. ZM401, a self-flocculating mutant developed from ZM4, the unicellular model strain of Z. mobilis, was employed in this work to explore the molecular mechanism underlying this self-flocculating phenotype. Comparative studies between ZM401 and ZM4 indicate that a frameshift caused by a single nucleotide deletion in the poly-T tract of ZMO1082 fused the putative gene with the open reading frame of ZMO1083, encoding the catalytic subunit BcsA of the bacterial cellulose synthase to catalyze cellulose biosynthesis. Furthermore, the single nucleotide polymorphism mutation in the open reading frame of ZMO1055, encoding a bifunctional GGDEF-EAL protein with apparent diguanylate cyclase/phosphodiesterase activities, resulted in the Ala526Val substitution, which consequently compromised in vivo specific phosphodiesterase activity for the degradation of cyclic diguanylic acid, leading to intracellular accumulation of the signaling molecule to activate cellulose biosynthesis. These discoveries are significant for engineering other unicellular strains from Z. mobilis with the self-flocculating phenotype for robust production. IMPORTANCE Stress tolerance is a prerequisite for microbial cell factories to be robust in production, particularly for biorefinery of lignocellulosic biomass to produce biofuels, bioenergy, and bio-based chemicals for sustainable socioeconomic development, since various inhibitors are released during the pretreatment to destroy the recalcitrant lignin-carbohydrate complex for sugar production through enzymatic hydrolysis of the cellulose component, and their detoxification is too costly for producing bulk commodities. Although tolerance to individual stress has been intensively studied, the progress seems less significant since microbial cells are inevitably suffering from multiple stresses simultaneously under production conditions. When self-flocculating, microbial cells are more tolerant to multiple stresses through the general stress response due to enhanced quorum sensing associated with the morphological change for physiological and metabolic advantages. Therefore, elucidation of the molecular mechanism underlying such a self-flocculating phenotype is significant for engineering microbial cells with the unique multicellular morphology through rational design to boost their production performance.


Asunto(s)
Zymomonas , Celulosa/metabolismo , Floculación , Hidrolasas Diéster Fosfóricas/metabolismo , Azúcares/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
8.
Invest New Drugs ; 39(3): 871-878, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33454868

RESUMEN

Breast cancer is the most diagnosed cancer in women. It significantly impairs a patient's physical and mental health. Gut microbiota comprise the bacteria residing in a host's gastrointestinal tract. Through studies over the last decade, we now know that alterations in the composition of the gut microbiome are associated with protection against colonization by pathogens and other diseases, such as diabetes and cancer. This review focuses on how gut microbiota can affect breast cancer development through estrogen activity and discusses the types of bacteria that may be involved in the onset and the progression of breast cancer. We also describe potential therapies to curtail the risk of breast cancer by restoring gut microbiota homeostasis and reducing systemic estrogen levels. This review will further explore the relationship between intestinal microbes and breast cancer and propose a method to treat breast cancer by improving intestinal microbes. We aimed at discovering new methods to prevent or treat BC by changing intestinal microorganisms.


Asunto(s)
Neoplasias de la Mama/microbiología , Microbioma Gastrointestinal , Neoplasias de la Mama/etiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Disbiosis/complicaciones , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/terapia , Estrógenos/metabolismo , Femenino , Homeostasis , Humanos
9.
Biotechnol Bioeng ; 118(8): 2990-3001, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33934328

RESUMEN

During continuous very-high-gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae, the process exhibits sustained oscillation in residual glucose, ethanol, and biomass, raising a question: how do yeast cells respond to this phenomenon? In this study, the oscillatory behavior of yeast cells was characterized through transcriptome and metabolome analysis for one complete oscillatory period. By analyzing the accumulation of 26 intracellular metabolites and the expression of 90 genes related to central carbon metabolism and stress response, we confirmed that the process oscillation was attributed to intracellular metabolic oscillation with phase difference, and the expression of HXK1, HXT1,2,4, and PFK1 was significantly different from other genes in the Embden-Meyerhof-Parnas pathway, indicating that glucose transport and phosphorylation could be key nodes for regulating the intracellular metabolism under oscillatory conditions. Moreover, the expression of stress response genes was triggered and affected predominately by ethanol inhibition in yeast cells. This progress not only contributes to the understanding of mechanisms underlying the process oscillation observed for continuous VHG ethanol fermentation, but also provides insights for understanding unsteady state that might develop in other continuous fermentation processes operated under VHG conditions to increase product titers for robust production.


Asunto(s)
Relojes Biológicos , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/crecimiento & desarrollo , Metabolómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biotechnol Bioeng ; 117(6): 1747-1760, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32124970

RESUMEN

Strains from Trichoderma reesei have been used for cellulase production with a long history. It has been well known that cellulase biosynthesis by the fungal species is controlled through regulators, and elucidation of their regulation network is of great importance for engineering T. reesei with robust cellulase production. However, progress in this regard is still very limited. In this study, T. reesei RUT-C30 was transformed with an artificial zinc finger protein (AZFP) library, and the mutant T. reesei M2 with improved cellulase production was screened. Compared to its parent strain, the filter paper activity and endo-ß-glucanase activity in cellulases produced by T. reesei M2 increased 67.2% and 35.3%, respectively. Analysis by quantitative reverse transcription polymerase chain reaction indicated significant downregulation of the putative gene ctf1 in T. reesei M2, and its deletion mutants were thus developed for further studies. An increase of 36.9% in cellulase production was observed in the deletion mutants, but when ctf1 was constitutively overexpressed in T. reesei RUT-C30 under the control of the strong pdc1 promoter, cellulase production was substantially compromised. Comparative transcriptomic analysis revealed that the deletion of ctf1 upregulated transcription of gene encoding the regulator VIB1, but downregulated transcription of gene encoding another regulator RCE1, which consequently upregulated genes encoding the transcription factors XYR1 and ACE3 for the activation of genes encoding cellulolytic enzymes. As a result, ctf1 was characterized as a gene encoding a repressor for cellulase production in T. reesei RUT-C30, which is significant for further elucidating molecular mechanism underlying cellulase biosynthesis by the fungal species for rational design to develop robust strains for cellulase production. And in the meantime, AZFP transformation was validated to be an effective strategy for identifying functions of putative genes in the genome of T. reesei.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Hypocreales/genética , Biosíntesis de Proteínas , Celulasa/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Hypocreales/metabolismo , Regiones Promotoras Genéticas , Ingeniería de Proteínas , Dedos de Zinc
11.
Small ; 15(25): e1901397, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31066236

RESUMEN

Microscale cell carriers have recently garnered enormous interest in repairing tissue defects by avoiding substantial open surgeries using implants for tissue regeneration. In this study, the highly open porous microspheres (HOPMs) are fabricated using a microfluidic technique for harboring proliferating skeletal myoblasts and evaluating their feasibility toward cell delivery application in situ. These biocompatible HOPMs with particle sizes of 280-370 µm possess open pores of 10-80 µm and interconnected paths. Such structure of the HOPMs conveniently provide a favorable microenvironment, where the cells are closely arranged in elongated shapes with the deposited extracellular matrix, facilitating cell adhesion and proliferation, as well as augmented myogenic differentiation. Furthermore, in vivo results in mice confirm improved cell retention and vascularization, as well as partial myoblast differentiation. These modular cell-laden microcarriers potentially allow for in situ tissue construction after minimally invasive delivery providing a convenient means for regeneration medicine.


Asunto(s)
Microesferas , Células Musculares/citología , Músculo Esquelético/citología , Animales , Materiales Biocompatibles/química , Línea Celular , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Porosidad , Conejos
12.
Biotechnol Bioeng ; 115(11): 2714-2725, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30063083

RESUMEN

Due to the unique Entner-Doudoroff pathway, Zymomonas mobilis has been acknowledged as a potential host to be engineered for biorefinery to produce biofuels and biobased chemicals. The self-flocculation of Z. mobilis can make the bacterial cells self-immobilized within bioreactors for high density to improve product productivities, and in the meantime enhance their tolerance to stresses, particularly product inhibition and the toxicity of byproducts released during the pretreatment of lignocellulosic biomass. In this work, we explored mechanism underlying such a phenotype with the self-flocculating strain ZM401 developed from the regular non-flocculating strain ZM4. Cellulase de-flocculation and the restoration of the self-flocculating phenotype for the de-flocculated bacterial cells subjected to culture confirmed the essential role of cellulose biosynthesis in the self-flocculation of ZM401. Furthermore, the deactivation of both Type I and Type IV restriction-modification systems was performed for ZM4 and ZM401 to improve their transformation efficiencies. Comparative genome analysis detected the deletion of a thymine from ZMO1082 in ZM401, leading to a frame-shift mutation for the putative gene to be integrated into the neighboring downstream gene ZMO1083 encoding the catalytic subunit A of cellulose synthase, and consequently created a new gene to encode a larger transmembrane protein BcsA_401 for more efficient synthesis of cellulose as well as the development of cellulose fibrils and their entanglement for the self-flocculation of the mutant. These speculations were confirmed by the morphological observation of the bacterial cells under scanning electron microscopy, the impact of the gene deletion on the self-flocculation of ZM401, and the restoration of the self-flocculating phenotype of ZM401 ΔbcsA by the gene complementation. The progress will lay a foundation not only for fundamental research in deciphering molecular mechanisms underlying the self-flocculation of Z. mobilis and stress tolerance associated with the morphological change but also for technological innovations in engineering non-flocculating Z. mobilis and other bacterial species with the self-flocculating phenotype.


Asunto(s)
Adhesión Bacteriana , Células Inmovilizadas/enzimología , Células Inmovilizadas/metabolismo , Celulosa/metabolismo , Glucosiltransferasas/metabolismo , Zymomonas/enzimología , Zymomonas/metabolismo , Células Inmovilizadas/fisiología , Enzimas de Restricción-Modificación del ADN , Floculación , Eliminación de Gen , Genómica , Glucosiltransferasas/genética , Lignina/metabolismo , Ingeniería Metabólica , Microscopía Electrónica de Rastreo , Transformación Bacteriana , Zymomonas/citología , Zymomonas/genética
13.
J Ind Microbiol Biotechnol ; 44(2): 295-301, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27999966

RESUMEN

Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.


Asunto(s)
Etanol/metabolismo , Glicósido Hidrolasas/genética , Helianthus/química , Microbiología Industrial/métodos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Glicósido Hidrolasas/metabolismo , Hidrólisis , Inulina/metabolismo , Microorganismos Modificados Genéticamente/genética , Tubérculos de la Planta/química , Temperatura
14.
J Microencapsul ; 34(8): 707-721, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29141479

RESUMEN

In this research, firstly astaxanthin (ASX)-loaded nanoemulsions (NEs) were produced using a convenient low-energy emulsion phase inversion method. The optimised ASX-NEs were prepared in the presence of Cremophor® EL and Labrafil® M 1944 CS, with a surfactant-to-oil ratio of 4:6. The ASX-NE droplets were spherical with a mean droplet diameter below 100 nm and a small negative surface charge. The system was stable without alteration of mean droplet diameter for three months. Then, the ASX-NE was functionalised with carboxymethyl chitosan (CMCS) through direct CMCS (0.02%) incorporation during the preparation process. The ASX chemical stability and skin permeability increased in the following order: ASX solution control < ASX-NE < CMCS-ASX-NE. Cell viability assays on L929 cells revealed low cytotoxicity of blank NE, ASX-NE and CMCS-ASX-NE in the range from 5 to 500 µg mL-1. In conclusion, the CMCS-ASX-NE might be a promising delivery vehicle in dermal and transdermal products.


Asunto(s)
Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Quitosano/análogos & derivados , Vehículos Farmacéuticos/química , Absorción Cutánea , Administración Cutánea , Animales , Antioxidantes/química , Quitosano/química , Estabilidad de Medicamentos , Emulsionantes/química , Emulsiones/química , Masculino , Aceites/química , Tamaño de la Partícula , Ratas Sprague-Dawley , Piel/metabolismo , Solubilidad , Agua/química , Xantófilas/administración & dosificación , Xantófilas/química , Xantófilas/farmacocinética
15.
Appl Microbiol Biotechnol ; 100(9): 3841-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26971495

RESUMEN

Poly(ß-L-malic acid) is one natural biopolymer that has the outstanding features of biocompatibility, biodegradability, water solubility, and non-immunogenicity, and it is easily chemically modified. So poly(ß-L-malic acid) (PMLA) and its derivatives may have a great potential application as a novel drug delivery system and in the production of advanced biomaterials which have attracted so much research attention. The fungi of Aureobasidium spp. have been discovered to be the most suitable candidates for PMLA production in large quantities which satisfy the demand of either research or industry. In this review, we will give an overall summary about the PMLA produced by Aureobasidium spp. based on related research in the last decades and the elaboration of this PMLA producer will also be accomplished. More importantly, the latest proceedings will be specified and some suggestions to the elucidation of a PMLA biosynthesis pathway which remains undefined up to date will be proposed. Finally, through this review, the further exploitation for the application of PMLA from Aureobasidium spp. can be emphasized and promoted.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Vías Biosintéticas/genética , Malatos/metabolismo , Polímeros/metabolismo
17.
Int J Mol Sci ; 16(4): 7195-209, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25837468

RESUMEN

Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin-mediated cancer therapy.


Asunto(s)
Preparaciones de Acción Retardada/química , Ácido Desoxicólico/química , Doxorrubicina/química , Ácido Hialurónico/química , Nanopartículas/química , Línea Celular Tumoral , Química Farmacéutica/métodos , Preparaciones de Acción Retardada/administración & dosificación , Ácido Desoxicólico/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Células HeLa , Humanos , Ácido Hialurónico/administración & dosificación , Nanopartículas/administración & dosificación , Tamaño de la Partícula
18.
Trends Biotechnol ; 42(4): 418-430, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37858385

RESUMEN

Lignocellulose is an alternative to fossil resources, but its biochemical conversion is not economically competitive. While decentralized processing can reduce logistical cost for this feedstock, sugar platforms need to be developed with energy-saving pretreatment technologies and cost-effective cellulases, and products must be selected correctly. Anaerobic fermentation with less energy consumption and lower contamination risk is preferred, particularly for producing biofuels. Great effort has been devoted to producing cellulosic ethanol, but CO2 released with large quantities during ethanol fermentation must be utilized in situ for credit. Unless titer and yield are improved substantially, butanol cannot be produced as an advanced biofuel. Microbial lipids produced through aerobic fermentation with low yield and intensive energy consumption are not affordable as feedstocks for biodiesel production.


Asunto(s)
Etanol , Lignina , Lignina/metabolismo , Etanol/metabolismo , Fermentación , Butanoles , Biocombustibles
19.
Front Immunol ; 15: 1343450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361936

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. In recent years, treatment with immune checkpoint inhibitors (ICIs) has gradually improved the survival rate of patients with NSCLC, especially those in the advanced stages. ICIs can block the tolerance pathways that are overexpressed by tumor cells and maintain the protective activity of immune system components against cancer cells. Emerging clinical evidence suggests that gut microbiota may modulate responses to ICIs treatment, possibly holding a key role in tumor immune surveillance and the efficacy of ICIs. Studies have also shown that diet can influence the abundance of gut microbiota in humans, therefore, dietary interventions and the adjustment of the gut microbiota is a novel and promising treatment strategy for adjunctive cancer therapy. This review comprehensively summarizes the effects of gut microbiota, antibiotics (ATBs), and dietary intervention on the efficacy of immunotherapy in NSCLC, with the aim of informing the development of novel strategies in NSCLC immunotherapy.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1 , Inmunoterapia
20.
Front Immunol ; 15: 1266850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426102

RESUMEN

The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neumonía , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neumonía/inducido químicamente , Neumonía/diagnóstico , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA