Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Neurol ; 24(1): 204, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879468

RESUMEN

Hypoxia can cause a variety of diseases, including ischemic stroke and neurodegenerative diseases. Within a certain range of partial pressure of oxygen, cells can respond to changes in oxygen. Changes in oxygen concentration beyond a threshold will cause damage or even necrosis of tissues and organs, especially for the central nervous system. Therefore, it is very important to find appropriate measures to alleviate damage. MiRNAs can participate in the regulation of hypoxic responses in various types of cells. MiRNAs are involved in regulating hypoxic responses in many types of tissues by activating the hypoxia-inducible factor (HIF) to affect angiogenesis, glycolysis and other biological processes. By analyzing differentially expressed miRNAs in hypoxia and hypoxia-related studies, as well as the HT22 neuronal cell line under hypoxic stress, we found that the expression of miR-18a was changed in these models. MiR-18a could regulate glucose metabolism in HT22 cells under hypoxic stress by directly regulating the 3'UTR of the Hif1a gene. As a small molecule, miRNAs are easy to be designed into small nucleic acid drugs, so this study can provide a theoretical basis for the research and treatment of nervous system diseases caused by hypoxia.


Asunto(s)
Glucosa , Hipocampo , Subunidad alfa del Factor 1 Inducible por Hipoxia , MicroARNs , Neuronas , Animales , Humanos , Ratones , Hipoxia de la Célula/fisiología , Línea Celular , Glucosa/metabolismo , Glucosa/deficiencia , Hipocampo/metabolismo , Hipocampo/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , MicroARNs/metabolismo , MicroARNs/genética , Neuronas/metabolismo
2.
J Environ Manage ; 353: 120143, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38301477

RESUMEN

The application of nitrification inhibitors (nitrapyrin) and urease inhibitors (N-(N-butyl) thiophosphoric triamide) under conventional water resources has been considered as an effective means to improve nitrogen utilization efficiency and mitigate soil greenhouse gas emissions. However, it is not known whether the inhibitors still have an inhibitory effect under unconventional water resources (reclaimed water and livestock wastewater) irrigation and whether their use in combination with biochar improves the mitigation effect. Therefore, unconventional water resources were used for irrigation, with groundwater (GW) control. Nitrapyrin and N-(N-butyl) thiophosphoric triamide were used alone or in combination with biochar in a pot experiment, and CO2, N2O, and CH4 emissions were measured. The results showed that irrigation of unconventional water resources exacerbated global warming potential (GWP). All exogenous substance treatments increased CO2 and CH4 emissions and suppressed N2O emissions, independent of the type of water, compared to no substances (NS). The inhibitors were ineffective in reducing the GWP whether or not in combination with biochar, and the combined application of inhibitors with biochar further increased the GWP. This study suggests that using inhibitors and biochar in combination to regulate the greenhouse effect under unconventional water resources irrigation should be done with caution.


Asunto(s)
Agricultura , Carbón Orgánico , Ganado , Compuestos Organofosforados , Animales , Agricultura/métodos , Aguas Residuales , Calentamiento Global , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo , Fertilizantes , Metano
3.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475446

RESUMEN

The cultivated land area in China is approaching the red line for farmland protection. Newly reclaimed land possesses a large exploratory potential to become a reserved land resource. Identifying a fertilization strategy is vital for improving the poor properties and weak fertility of newly reclaimed land. An experiment was conducted to study the effects of traditional compound fertilizer (Fc) or bio-organic fertilizer (Ft), alone or in combination with biochar addition (6.85 t·ha-1 and 13.7 t·ha-1) on the growth, photosynthesis, yield and quality of Chinese small cabbage (CSC) plant. The results showed that compared to single compound fertilizer application, bio-organic fertilizer application promoted the plant's growth, indicated by the plant height, stem diameter and leaf area index (LAI), and significantly enhanced the yield and dry matter accumulation of CSC. In terms of the combination with biochar, the promoting effects were positively related to the biochar addition rate in the compound fertilizer group, while it was better to apply bio-organic fertilizer alone or in combination with biochar at a low rate of 6.85 t·ha-1. The highest yield was obtained under B2Fc and B1Ft with 29.41 and 37.93 t·ha-1, respectively, and the yield under B1Ft was significantly higher than that under B2Fc. The water productivity (WP) significantly improved in response to both kinds of fertilizer combined with biochar at 6.85 t·ha-1. There was a significant difference between the photosynthetic characteristics of plants treated with single-compound fertilizer and those treated with bio-organic fertilizer. The photosynthetic characteristics increased under compound fertilizer combined with biochar, while they regressed under bio-organic fertilizer combined with biochar. The quality of CSC, especially that of soluble sugars and total phenolics, improved under single bio-organic fertilizer application compared with that under single-compound fertilizer. The nitrite content of the plants increased with increasing biochar addition rate in both fertilizer groups. In conclusion, there is a significant promoting effect of applying bio-organic fertilizer to replace chemical fertilizer alone or combining compound fertilizer with low-rate biochar addition on newly reclaimed land. It is a recommended fertilization strategy to substitute or partially substitute chemical fertilizer with bio-organic fertilizer combined with biochar in newly reclaimed land, and it is of great significance to achieve fertilizer reduction.

4.
Huan Jing Ke Xue ; 45(1): 555-566, 2024 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-38216504

RESUMEN

Agricultural utilization of reclaimed water is considered to be an effective way to solve water shortage and reduce water environmental pollution. Silicon fertilizer can improve crop yield and quality and enhance crop resistance. The effect of foliar spray with silicon fertilizer on phyllosphere microbial communities remains lacking. In this study, a pot experiment was conducted to explore the effects of different types of silicon fertilizer on the composition and diversity of a phyllosphere bacterial community and the abundances of related functional genes in rice irrigated with reclaimed water. The results showed that Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Verrucomicrobiota dominated the phyllosphere bacteria of rice. The relative abundance of Bacillus was higher than that of other treatments in RIS3. Reclaimed water irrigation significantly increased the relative abundances of the potential pathogens Pantoea and Enterobacter. The unclassified bacteria were also an important part of the bacterial community in the rice phyllosphere. Bacillus, Exiguobacterium, Aeromonas, and Citrobacter were significantly enriched by silicon fertilizer treatments. Functional prediction analysis showed that indicator species were mainly involved in metabolism and degradation functions, and the predicted functional groups of phyllosphere bacteria were attributed to chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and fermentation. Quantitative PCR results showed that AOA, AOB, and nifH genes were at low abundance levels in all treatments, and nirK genes was not significantly different among treatments. These results contribute to the in-depth understanding of the effects of foliar spray silicon fertilizer on the bacterial community structure and diversity of rice phyllosphere and provide a theoretical basis for the application of silicon fertilizer in reclaimed water irrigation agriculture.


Asunto(s)
Bacillus , Oryza , Fertilizantes/análisis , Silicio/farmacología , Suelo/química , Agua/análisis , Bacterias/genética , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA