Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Orthop Surg ; 16(6): 1445-1460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706035

RESUMEN

OBJECTIVES: The micro-nano structure of 3D-printed porous titanium (Ti) alloy with excellent performance in avoiding stress shielding and promoting bone tissue differentiation provides a new opportunity for the development of bone implants, but it necessitates higher requirements for bone tissue differentiation and the antibacterial properties of bone implants in clinical practice. METHODS: This study investigated the preparation, antimicrobial properties, and osteogenesis-promoting ability of the 3D printed porous Ti alloy anodic oxidized Ag-carrying (Ag@3D-TiO2) scaffolds. The 3D printed porous Ti alloy (3D-Ti), anodized 3D printed porous Ti alloy (3D-TiO2), and Ag@3D-TiO2 scaffolds were synthesized using electron beam melting. The antimicrobial properties of the scaffolds were examined using antibacterial tests and their cytocompatibility was assessed using a cell proliferation assay and acridine orange/ethidium bromide (AO/EB) staining. In vitro cellular assays were used to investigate the effects of the scaffold microstructural features on cell activity, proliferation, and osteogenesis-related genes and proteins. In vivo animal experiments were used to evaluate the anti-inflammatory and osteogenesis-promoting abilities of the scaffolds. RESULTS: The Ag@3D-TiO2 scaffolds exhibited sustained anti-microbial activity over time, enhanced cell proliferation, facilitated osteogenic differentiation, and increased extracellular matrix mineralization. In addition, alkaline phosphatase (ALP), collagen type I (COL-I), and osteocalcin (OCN)-related genes and proteins were upregulated. In vivo animal implantation experiments, the anti-inflammatory effect of the Ag@3D-TiO2 scaffolds were observed using histology, and a large amount of fibrous connective tissue was present around it; the Ag@3D-TiO2 scaffolds were more bio-compatible with the surrounding tissues compared with 3D-Ti and 3D-TiO2; a large amount of uniformly distributed neoplastic bone tissue existed in their pores, and the chronic systemic toxicity test showed that the 3D-Ti, 3D-TiO2, and Ag@3D-TiO2 scaffolds are biologically safe. CONCLUSION: The goal of this study was to create a scaffold that exhibits antimicrobial properties and can aid bone growth, making it highly suitable for use in bone tissue engineering.


Asunto(s)
Osteogénesis , Impresión Tridimensional , Plata , Andamios del Tejido , Titanio , Osteogénesis/efectos de los fármacos , Plata/farmacología , Plata/química , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antibacterianos/farmacología , Porosidad
2.
Materials (Basel) ; 16(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569910

RESUMEN

Titanium alloy Ti6Al4V is a commonly used bone implant material, primarily prepared as a porous material to better match the elastic modulus of human bone. However, titanium alloy is biologically inert and does not have antibacterial properties. At the same time, the porous structure with a large specific surface area also increases the risk of infection, leading to surgical failure. In this paper, we prepared three porous samples with different porosities of 60%, 75%, and 85%, respectively (for short, 3D-60, 3D-75, and 3D-85) using 3D printing technology and clarified the mechanical properties. Through tensile experiments, when the porosity was 60%, the compressive modulus was within the elastic modulus of human bone. Anodic oxidation technology carried out the surface modification of a 3D-printed porous titanium alloy with 60% porosity. Through change, the different voltages and times on the TiO2 oxide layer on the 3D-printed porous titanium alloy are different, and it reveals the growth mechanism of the TiO2 oxide layer on a 3D-printed unique titanium alloy. The surface hydrophilic and antibacterial properties of 3D-printed porous titanium alloy were significantly improved after modification by anodic oxidation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA