Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 75(1): 422-437, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37715996

RESUMEN

Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.


Asunto(s)
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacología , Suelo , Salinidad , Desarrollo de la Planta , Xilema , Sequías , Hojas de la Planta
2.
Plant Cell Environ ; 43(3): 563-578, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31721225

RESUMEN

Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2 ] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2 ], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2 ] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2 ] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2 ], vessel diameter, vessel roundness, stem cross-section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2 ]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade-off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2 ] but not observed at elevated [CO2 ]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade-offs in xylem structure and function.


Asunto(s)
Dióxido de Carbono/farmacología , Tallos de la Planta/fisiología , Agua/metabolismo , Xilema/anatomía & histología , Zea mays/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Tallos de la Planta/efectos de los fármacos , Xilema/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
3.
Environ Sci Pollut Res Int ; 29(50): 75539-75549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35657547

RESUMEN

The massive use of pesticides brings considerable environmental and human health impacts. This study conducted an overall assessment of the ecological impact of the extensive pesticide use in China from 1999 to 2018 through the Chemical Footprint (ChF) calculation. The results demonstrated that the primary ecological impacts caused by pesticides occurred in the most central and eastern regions in China, e.g., provinces of Shandong, Henan, Hubei, Anhui, and Jiangsu. The northeastern, some southern and central provinces, e.g., Heilongjiang, Jilin, Liaoning, Yunnan, Guangxi, Guangdong, Ningxia, and Shaanxi, got moderate impacts, whereas the northwest regions, e.g., Qinghai, Xinjiang, and Tibet, had much lighter impacts relatively. The agricultural soil in inland areas and surface sea waters in coastal provinces bore the major impacts of the pesticide pollution in China, shared above 80% of the ChF across all environmental compartments. Chlorpyrifos, pymetrozine, fenpropathrin, pyridaben, atrazine, etc., were the pesticides that had the greatest impacts on the ecosystem, which contributed over 95% of the total ChF of pesticides used in China, although the use amount of these pesticides accounted for less than 10% of the total use amount of all pesticides annually. The study also indicated that the overall ChF of pesticide use in China has been declining since 2010, which was corresponding with the control actions of highly hazardous pesticides, especially the elimination of high toxic organophosphorus insecticides during the past decade.


Asunto(s)
Atrazina , Cloropirifos , Insecticidas , Plaguicidas , China , Ecosistema , Humanos , Suelo
4.
Sci Total Environ ; 666: 423-430, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30802658

RESUMEN

While short-chain chlorinated paraffins (SCCPs) comprise a myriad of components whose physicochemical properties are extremely diverse, many previous studies characterized the SCCP mixtures collectively using a single set of physicochemical properties when modeling the global environmental fate and risk. In this work, we explore whether a discrepancy exists between simulations based on a single set of physicochemical properties and multiple component-specific ones in global fate and risk modeling, and the environmental condition (e.g., proximity to emission source vs. temperature) in which such a discrepancy is most notable. We simulated the environmental concentrations and compartmental distribution of SCCPs, using a mechanistic fugacity-based multimedia BETR-Global model. We observed a discrepancy between modeled concentrations based on a single and multiple sets of properties, which is more notable in regions with a low temperature and negligible emissions, e.g., the remote and cold background Arctic region. The modeled compartmental distribution differs slightly between simulations based on different sets of physicochemical properties. While using a single set of properties minimizes input data required for model-based evaluation of the risk of SCCPs, it tends to underestimate the environmental occurrence and risk in remote and cold regions, which are vulnerable and hence deserve a more conservative evaluation conclusion, and prevents us from drawing conclusions on which SCCP component is of greatest concern. The current work can be a relevant step towards improving the methodology for global environmental modeling and risk assessment of SCCPs and other complex halogenated chemical mixtures.

5.
Environ Pollut ; 250: 79-86, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30981938

RESUMEN

Decabromodiphenyl ethane (DBDPE) is an alternative to the commercial decabromodiphenyl ether (deca-BDE) mixture but has potentially similar persistence, bioaccumulation potential and toxicity. While it is widely used as a flame retardant in electrical and electronic equipment (EEE) in China, DBDPE could be distributed globally on a large scale with the international trade of EEE emanating from China. Here, we performed a dynamic substance flow analysis to estimate the time-dependent mass flows, stocks and emissions of DBDPE in China, and the global spread of DBDPE originating in China through the international trade of EEE and e-waste. Our analysis indicates that, between 2006 and 2016, ∼230 thousand tonnes (kt) of DBDPE were produced in China; production, use and disposal activities led to the release of 196 tonnes of DBDPE to the environment. By the end of 2016, ∼152 kt of the DBDPE produced resided in in-use products across China. During the period 2000-2016, ∼39 kt of DBDPE were exported from China in EEE products, most of which (>50%) ended up in North America. Based on projected trends of China's DBDPE production, use and EEE exports, we predict that, by 2026, ∼74 and ∼14 kt of DBDPE originating in China will reside in in-use and waste stocks, respectively, in regions other than mainland China, which will act as long-term emission sources of DBDPE worldwide. This study discusses the considerable impact of DBDPE originating in China and distributed globally through the international trade of EEE; this is projected to occur on a large scale in the near future, which necessitates countermeasures.


Asunto(s)
Bromobencenos/análisis , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Residuos/análisis , China , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA