RESUMEN
Based on the pharmacological synergy of JAK2 and BRD4 in the NF-κB pathway and positive therapeutic effect of combination of JAK2 and BRD4 inhibitors in treating MPN and inflammation. A series of unique 9H-purine-2,6-diamine derivatives that selectively inhibited Janus kinase 2 (JAK2) and BRD4(BD2) were designed, prepared, and evaluated for their in vitro and in vivo potency. Among them, compound 9j exhibited acceptable inhibitory activity with IC50 values of 13 and 22 nM for BD2 of BRD4 and JAK2, respectively. The western blot assay demonstrated that 9j performed good functional potency in the NF-κB pathway and the phosphorylation of p65, IκB-α, and IKKα/ß signal intensities were suppressed on RAW264.7 cell lines. Furthermore, 9j significantly improved the disease symptoms in a Ba/F3-JAK2V617F allograft model. Meanwhile, 9j was also effective in relieving symptoms in an acute ulcerative colitis model. Taken together, 9j was a potent JAK2/BRD4(BD2) dual target inhibitor and could be a potential lead compound in treating myeloproliferative neoplasms and inflammatory diseases.
Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Humanos , Proteínas Nucleares , FN-kappa B , Factores de Transcripción/metabolismo , Trastornos Mieloproliferativos/tratamiento farmacológico , Proteínas de Ciclo CelularRESUMEN
Clinical FLT3 mutations caused poor therapeutic benefits toward the present FLT3 inhibitors, and degradation of the FLT3 mutant protein may be a promising alternative approach to protect against acute myeloid leukemia (AML). Herein, we report the discovery of small molecule FLT3 degraders based on the proteolysis targeting chimera (PROTAC). FLT3 degraders were designed, synthesized, and evaluated for FLT3 degradation. Promising PF15 significantly inhibited the proliferation of FLT3-ITD-positive cells, induced FLT3 degradation and downregulated the phosphorylation of FLT3 and STAT5. An in vivo xenograft model and survival period evaluation verified the efficacy of PROTAC. These findings laid a robust foundation for FLT3-PROTAC molecules as an effective strategy for treating AML.
Asunto(s)
Antineoplásicos/farmacología , Lenalidomida/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Lenalidomida/síntesis química , Lenalidomida/química , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estructura Molecular , Mutación , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismoRESUMEN
FMS-like tyrosine kinase-3 (FLT3) and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have been proven to play a significant role in tumor therapy. Herein, based on the previously reported JAK2/FLT3 inhibitor 18e, we described the synthesis, structure-activity relationship and biological evaluation of a series of unique 6-(pyrimidin-4-yl)-1H-pyrazolo[4,3-b]pyridine derivatives that inhibited FLT3 and CDK4 kinases. The optimized compound 23k exhibited low nanomolar range activities with IC50 values of 11 and 7 nM for FLT3 and CDK4, respectively. In the MV4-11 xenograft tumor model, the tumor growth inhibition rate of 23k dosed at 200 mg/kg was 67%, suggesting that 23k possessed an antitumor therapeutic effect.
Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Línea Celular Tumoral , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Piridinas , Relación Estructura-Actividad , Tirosina Quinasa 3 Similar a fmsRESUMEN
The objective of this study was to identify metabolites of PD110 by UHPLC-Q-Exactive Plus MS and determine its metabolic pathways in vivo.Mouse urine, faeces, and plasma samples were collected after an intraperitoneal administration of PD110 at a single dose of 30 mg·kg-1.The metabolites were detected and identified by UHPLC-Q-Exactive Plus MS and Compound DiscovererTM 2.0 software.In total, 44 metabolites (including 31 phase-I and 13 phase-II metabolites) were preliminarily identified according to the mass accuracy (<5 ppm) and comparison of their mass spectrometry profiles. Oxidation, glucuronide conjugation, and glucoside conjugation were the main metabolic pathways of PD110 in mice.This research first focussed on the biotransformation of PD110 in mice, and its metabolites may provide pivotal information for further pharmacological and clinical studies.
Asunto(s)
Quinazolinonas , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Heces/química , Ratones , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodosRESUMEN
Salt inducible kinase 2 (SIK2) is a calcium/calmodulin-dependent protein kinase-like kinase that is implicated in a variety of biological phenomena, including cellular metabolism, growth, and apoptosis. SIK2 is the key target for various cancers, including ovarian, breast, prostate, and lung cancers. Although potent inhibitors of SIK2 are being developed, their binding stability and functional role are not presently known. In this work, we studied the detailed interactions between SIK2 and four of its inhibitors, HG-9-91-01, KIN112, MRT67307, and MRT199665, using molecular docking, molecular dynamics simulation, binding free energy calculation, and interaction fingerprint analysis. Intermolecular interactions revealed that HG-9-91-01 and KIN112 have stronger interactions with SIK2 than those of MRT199665 and MRT67307. The key residues involved in binding with SIK2 are conserved among all four inhibitors. Our results explain the detailed interaction of SIK2 with its inhibitors at the molecular level, thus paving the way for the development of targeted efficient anti-cancer drugs.
Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Termodinámica , Sitios de Unión/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/químicaRESUMEN
Chlorantraniliprole (CHL), a favored agricultural insecticide, is renowned for its high efficiency and broad-spectrum effectiveness against lepidoptera insects. However, the urgency for new insecticide development is underscored by the intricate multistep preparation process and modest overall yields of CHL, along with the escalating challenge of insect resistance. In response, we have crafted CHL mimics from proline employing computer-aided drug design. Molecular docking analysis of CHL's interactions with the ryanodine receptor (RyR) revealed that the nitrogen atom within the pyrazole moiety does not engage in pivotal interactions. Its removal may not abolish bioactivity entirely but could substantially simplify the synthetic process, thereby enhancing atom economy. This revelation prompted the exclusion of nitrogen and the subsequent formation of a pyrrole ring, enabling the meticulous design of synthetic pathways characterized by cost-effective precursors, streamlined synthesis, the avoidance of toxic reagents, minimal instrumentation, and high yields in the pursuit of innovative RyR modulators. Among these modulators, A1 and B1, obtained with yields exceeding 60%, showcased exceptional insecticidal potency, with LC50 values spanning from 0.12 to 1.47 mg L-1 against P. xylostella and M. separate. The inhibitory effects of these two compounds on insect detoxification enzymes imply a reduced likelihood of eliciting resistance in comparison to CHL, a finding further corroborated by their insecticidal potency against resistant pests. Moreover, molecular docking, MD simulations, and DFT calculations provided valuable structural insights, potentially unraveling the superior insecticidal activity of these two molecules, and thus paving the way for developing more potent insecticides.
RESUMEN
Given the multifaceted biological functions of DNA-PK encompassing DNA repair pathways and beyond, coupled with the susceptibility of DNA-PK-deficient cells to DNA-damaging agents, significant strides have been made in the pursuit of clinical potential for DNA-PK inhibitors as synergistic adjuncts to chemo- or radiotherapy. Nevertheless, although substantial progress has been made with the discovery of potent inhibitors of DNA-PK, the clinical trial landscape requires even more potent and selective molecules. This necessitates further endeavors to expand the repertoire of clinically accessible DNA-PK inhibitors for the ultimate benefit of patients. Described herein are the obstacles that were encountered and the solutions that were found, which eventually led to the identification of compound 31t. This compound exhibited a remarkable combination of robust potency and exceptional selectivity along with favorable in vivo profiles as substantiated by pharmacokinetic studies in rats and pharmacodynamic assessments in H460, BT474, and A549 xenograft models.
Asunto(s)
Antineoplásicos , Humanos , Ratas , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacocinética , Línea Celular TumoralRESUMEN
The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.
Asunto(s)
Diseño de Fármacos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Sesquiterpenos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Animales , Sesquiterpenos/farmacología , Sesquiterpenos/síntesis química , Sesquiterpenos/química , Ratones , Relación Estructura-Actividad , Interleucina-1beta/metabolismo , Células THP-1 , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Ratones Endogámicos C57BLRESUMEN
ATM plays an important role in DNA damage response and is considered a potential target in cancer therapies. In this study, a goal-directed molecular generation approach based on ligand similarity and target specificity was applied to sample active molecules, and they were screened virtually to identify the theoretical lead compound 7a, which was later shown to inhibit ATM adequately. However, there is a main concern about its poor metabolic stability in vitro. Subsequent optimization was performed to improve the potency and selectivity toward ATM and attenuate the hepatic clearance in vitro, culminating in the identification of 10r with nanomolar ATM inhibition, excellent cellular sensitivity to radiation and chemotherapy drugs, and impressive pharmacokinetic profiles. Furthermore, 10r combined with irinotecan demonstrated a synergistic antitumor efficacy in SW620 xenograft models, suggesting that it could be a promising candidate drug combined with chemotherapy for the treatment of cancer.
Asunto(s)
Neoplasias , Quinoxalinas , Humanos , Objetivos , Detección Precoz del Cáncer , Irinotecán/farmacología , Irinotecán/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismoRESUMEN
The kinase domain is highly conserved among protein kinases 'in terms of both sequence and structure. Conformational rearrangements of the kinase domain are affected by the phosphorylation of residues and the binding of kinase inhibitors. Interestingly, the conformational rearrangement of the active pocket plays an important role in kinase activity and can be used to design novel kinase inhibitors. We characterized the conformational plasticity of the active pocket when bosutinib was bound to salt-inducible kinase 2 (SIK2) using homology modeling and molecular dynamics simulations. Ten different initial complex models were constructed using the Morph server, ranging from open to closed conformations of SIK2 binding with bosutinib. Our simulation showed that bosutinib binds SIK2 with up or down conformations of the P-loop and with all the conformations of the activation loop. In addition, the αC-helix conformation was induced by the conformation of the activation loop, and the salt bridge formed only with its open conformation. The binding affinity of the models was also determined using the molecular mechanics generalized Born surface area method. Bosutinib was found to form a strong binding model with SIK2 and hydrophobic interactions were the dominant factor. This discovery may help guide the design of novel SIK2 inhibitors.
RESUMEN
Nowadays, PI3Kδ-γ dual inhibitors have been approved for the treatment of B-cell malignancies. Dual inhibition of PI3Kδ and PI3Kγ represents a unique therapeutic opportunity and may confer greater benefits than either isoform inhibition alone in the management of hematological malignancies. However, currently available dual inhibitors of PI3Kδ-γ compromise in at least one of several essential properties in terms of potency, selectivity, and pharmacokinetic (PK) profiles. Hence, the main challenge of our optimization campaign was to identify an oral available PI3Kδ-γ dual inhibitor with an optimum balance of potency, selectivity, and PK profiles. The medicinal chemistry efforts culminated in the discovery of compound 58, which exhibited strong potency and high selectivity along with excellent in vivo profiles as demonstrated through PK studies in rats and through pharmacodynamic studies in an SUDHL-6 xenograft model. All the results suggest that compound 58 may be a promising candidate for the treatment of B-cell malignancies.
Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Animales , Linfocitos B , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , RatasRESUMEN
Receptor-interacting serine/threonine protein kinase 2 (RIPK2) has been demonstrated to be a promising target for treating inflammatory diseases. Herein, we describe the discovery and optimization of a series of RIPK2 inhibitors derived from an FLT3 inhibitor, CHMFL-FLT3-165. Compound 10w was identified to possess an IC50 value of 0.6 nM for RIPK2 and greater than 50,000-fold selectivity over its family homologous kinase RIPK1 (IC50 > 30 µM). It exhibited high kinase selectivity and inhibited RIPK2 to prevent NOD-induced cytokine production following muramyl dipeptide (MDP) stimulation. In an acute colitis model, compound 10w exerted better therapeutic effects than the JAK inhibitor filgotinib and the RIPK2 inhibitor WEHI-345. These robust results of in vitro and in vivo pharmacodynamic experiments demonstrate that RIPK2 as a therapeutic target shows potential abilities for the treatment of inflammatory bowel diseases.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Serina , TreoninaRESUMEN
TYK2 mediates signaling of IL-23, IL-12, and Type I IFN-driven responses that are critical in immune-mediated diseases. Herein, we report the design, synthesis, and structure-activity relationships (SARs) of 3-(4-(2-((1H-indol-5-yl)amino)-5-fluoropyrimidin-4-yl)-1H-pyrazol-1-yl)propanenitrile derivatives as selective TYK2 inhibitors. Among them, compound 14l exhibited acceptable TYK2 inhibition with an IC50 value of 9 nM, showed satisfactory selectivity characteristics over the other three homologous JAK kinases, and performed good functional potency in the JAK/STAT signaling pathway on lymphocyte lines and human whole blood. In liver microsomal assay studies, the clearance rate and half-life of 14l were 11.4 mL/min/g and 121.6 min, respectively. Furthermore, in a dextran sulfate sodium colitis model, 14l reduced the production of pro-inflammatory cytokines IL-6 and TNF-α and improved the inflammation symptoms of mucosal infiltration, thickening, and edema. Taken together, 14l was a selective TYK2 inhibitor and could be used to treat immune diseases deserving further investigation.
Asunto(s)
Fármacos Gastrointestinales/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , TYK2 Quinasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Colon/patología , Estabilidad de Medicamentos , Fármacos Gastrointestinales/síntesis química , Fármacos Gastrointestinales/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/patología , Masculino , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/síntesis química , Pirazoles/metabolismo , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Ratas Sprague-Dawley , Relación Estructura-Actividad , TYK2 Quinasa/metabolismoRESUMEN
Guided by molecular docking, a commonly used open-chain linker was cyclized into a five-membered pyrrolidine to lock the overall conformation of the propeller-shaped molecule. Different substituents were introduced into the pyrrolidine moiety to block oxidative metabolism. Surprisingly, it was found that a small methyl substituent could be used to alleviate the oxidative metabolism of pyrrolidine while maintaining or enhancing potency, which could be described as a "magic methyl". Further optimization around the "3rd blade" of the propeller led to identification of a series of potent and selective PI3Kδ inhibitors. Among them, compound 50 afforded an optimum balance of PK profiles and potency. Oral administration of 50 attenuated the arthritis severity in a dose-dependent manner in a collagen-induced arthritis model without obvious toxicity. Furthermore, 50 demonstrated excellent pharmacokinetic properties with high bioavailability, suggesting that 50 might be an acceptable candidate for treatment of inflammatory diseases.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/tratamiento farmacológico , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/farmacología , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Artritis Experimental/inducido químicamente , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos DBA , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinonas/administración & dosificación , Quinazolinonas/química , Relación Estructura-ActividadRESUMEN
Magnolol and honokiol are the two major active ingredients with similar structure and anticancer activity from traditional Chinese medicine Magnolia officinalis, and honokiol is now in a phase I clinical trial (CTR20170822) for advanced non-small cell lung cancer (NSCLC). In search of potent lead compounds with better activity, our previous study has demonstrated that magnolol derivative C2, 3-(4-aminopiperidin-1-yl)methyl magnolol, has better activity than honokiol. Here, based on the core of 3-(4-aminopiperidin-1-yl)methyl magnolol, we synthesized fifty-one magnolol derivatives. Among them, compound 30 exhibited the most potent antiproliferative activities on H460, HCC827, H1975 cell lines with the IC50 values of 0.63-0.93 µM, which were approximately 10- and 100-fold more potent than those of C2 and magnolol, respectively. Besides, oral administration of 30 and C2 on an H460 xenograft model also demonstrated that 30 has better activity than C2. Mechanism study revealed that 30 induced G0/G1 phase cell cycle arrest, apoptosis and autophagy in cancer cells. Moreover, blocking autophagy by the autophagic inhibitor enhanced the anticancer activity of 30in vitro and in vivo, suggesting autophagy played a cytoprotective role on 30-induced cancer cell death. Taken together, our study implied that compound 30 combined with autophagic inhibitor could be another choice for NSCLC treatment in further investigation.
Asunto(s)
Antineoplásicos Fitogénicos/química , Autofagia/efectos de los fármacos , Compuestos de Bifenilo/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lignanos/química , Neoplasias Pulmonares/tratamiento farmacológico , Magnolia/química , Extractos Vegetales/química , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Lignanos/farmacología , Ratones Endogámicos BALB C , Solubilidad , Relación Estructura-ActividadRESUMEN
In this study, we described a series of N-(pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective JAK2 (Janus kinase 2) inhibitors. Systematic exploration of the structure-activity relationship though cyclization modification based on previously reported compound 18e led to the discovery of the superior derivative 13ac. Compound 13ac showed excellent potency on JAK2 kinase, SET-2, and Ba/F3V617F cells (high expression of JAK2V617F mutation) with IC50 values of 3, 11.7, and 41 nM, respectively. Further mechanistic studies demonstrated that compound 13ac could downregulate the phosphorylation of downstream proteins of JAK2 kinase in cells. Compound 13ac also showed good selectivity in kinase scanning and potent in vivo antitumor efficacy with 82.3% tumor growth inhibition in the SET-2 xenograft model. Moreover, 13ac significantly ameliorated the disease symptoms in a Ba/F3-JAK2V617F allograft model, with 77.1% normalization of spleen weight, which was more potent than Ruxolitinib.
Asunto(s)
Antineoplásicos/uso terapéutico , Isoquinolinas/uso terapéutico , Janus Quinasa 2/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Femenino , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/metabolismo , Isoquinolinas/farmacocinética , Janus Quinasa 2/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Simulación del Acoplamiento Molecular , Estructura Molecular , Trastornos Mieloproliferativos/tratamiento farmacológico , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening and interstitial lung disease with the median survival of only 3-5 years. However, due to the unclear etiology and problems in accurate diagnosis, up to now only two drugs were approved by FDA for the treatment of IPF and their outcome responses are limited. Numerous studies have shown that TGF-ß is the most important cytokine in the development of pulmonary fibrosis and plays a role through its downstream signaling molecule TGF-binding receptor Smads protein. In this paper, compounds bearing 2(1H)-quinolone scaffold were designed and their anti-fibrosis effects were evaluated. Of these compounds, 20f was identified as the most active one and could inhibit TGF-ß-induced collagen deposition of NRK-49F cells and mouse fibroblasts migration with comparable activity and lower cytotoxicity than nintedanib in vitro. Further mechanism studies indicated that 20f reduced the expression of fibrogenic phenotypic protein α-SMA and collagen â by inhibiting the TGF-ß/Smad dependent pathways and ERK1/2 and p38 pathways. Moreover, compared with the nintedanib, 20f (100 mg/kg/day, p.o) more effectively alleviated collagen deposition in lung tissue and delayed the destruction of lung tissue structure both in bleomycin-induced prevention and treatment mice pulmonary fibrosis models. The immunohistochemical experiments further showed that 20f could block the expression level of phosphorylated Smad3 in the lung tissue cells, which resulted in its anti-fibrosis effects in vivo. In addition, 20f demonstrated good bioavailability (F = 41.55% vs 12%, compare with nintedanib) and an appropriate elimination half-life (T1/2 = 3.5 h), suggesting that 20f may be a potential drug candidate for the treatment of pulmonary fibrosis.
Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Quinolonas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Actinas/metabolismo , Animales , Bleomicina , Línea Celular , Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/metabolismo , Diseño de Fármacos , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Quinolonas/síntesis química , Quinolonas/farmacocinética , Quinolonas/toxicidad , Ratas Sprague-Dawley , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Relación Estructura-Actividad , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Herein, we describe the design, synthesis, and structure-activity relationships of a series of unique 4-(1H-pyrazol-4-yl)-pyrimidin-2-amine derivatives that selectively inhibit Janus kinase 2 (JAK2) and FLT3 kinases. These screening cascades revealed that 18e was a preferred compound, with IC50 values of 0.7 and 4 nM for JAK2 and FLT3, respectively. Moreover, 18e was a potent JAK2 inhibitor with 37-fold and 56-fold selectivity over JAK1 and JAK3, respectively, and possessed an excellent selectivity profile over the other 100 representative kinases. In a series of cytokine-stimulated cell-based assays, 18e exhibited a higher JAK2 selectivity over other JAK isoforms. The oral administration of 60 mg/kg of 18e could significantly inhibit tumor growth, with a tumor growth inhibition rate of 93 and 85% in MV4-11 and SET-2 xenograft models, respectively. Additionally, 18e showed an excellent bioavailability (F = 58%), a suitable half-life time (T1/2 = 4.1 h), a satisfactory metabolic stability, and a weak CYP3A4 inhibitory activity, suggesting that 18e might be a potential drug candidate for JAK2-driven myeloproliferative neoplasms and FLT3-internal tandem duplication-driven acute myelogenous leukemia.