Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205043

RESUMEN

Vibration sensors are widely used in many fields like industry, agriculture, military, medicine, environment, etc. However, due to the speedy upgrading, most sensors composed of rigid or even toxic materials cause pollution to the environment and give rise to an increased amount of electronic waste. To meet the requirement of green electronics, biodegradable materials are advocated to be used to develop vibration sensors. Herein, a vibration sensor is reported based on a strategy of pencil-drawing graphite on paper. Specifically, a repeated pencil-drawing process is carried out on paper with a zigzag-shaped framework and parallel microgrooves, to form a graphite coating, thus serving as a functional conductive layer for electromechanical signal conversion. To enhance the sensor's sensitivity to vibration, a mass is loaded in the center of the paper, so that higher oscillation amplitude could happen under vibrational excitation. In so doing, the paper-based sensor can respond to vibrations with a wide frequency range from 5 Hz to 1 kHz, and vibrations with a maximum acceleration of 10 g. The results demonstrate that the sensor can not only be utilized for monitoring vibrations generated by the knuckle-knocking of plastic plates or objects falling down but also can be used to detect vibration in areas such as the shield cut head to assess the working conditions of machinery. The paper-based MEMS vibration sensor exhibits merits like easy fabrication, low cost, and being environmentally friendly, which indicates its great application potential in vibration monitoring fields.

2.
J Org Chem ; 85(18): 11959-11967, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32812431

RESUMEN

An iridium-catalyzed selenium-directed ortho-C-H borylation of benzyl selenide derivatives was successfully developed. This is the first example where selenium is used as a directing group in C-H borylation. The reaction was carried out using the tricyclohexylphosphine ligand for an improved catalytic efficiency. Various substrates were tolerated and afforded either ortho-monoborylated products (substrates bearing ortho- or meta-substituents) or diborylated products (substrates bearing para-substituents) in good yields. This study provides an efficient synthetic method for the preparation of a variety of organoselenium compounds.

3.
Polymers (Basel) ; 16(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39274167

RESUMEN

Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of machinery become increasingly complex, there is a growing demand for sensors capable of working in wet and humid conditions. Here, we present a flexible, superhydrophobic vibration sensor with parallel microcracks. The sensor is fabricated using a femtosecond laser direct writing ablation strategy to create the parallel cracks on a PDMS film, followed by spray-coating with a conductive ink composed of MWCNTs, CB, and PDMS. The results demonstrate that the developed flexible sensor exhibits a high-frequency response of up to 2000 Hz, a high acceleration response of up to 100 m/s2, a water contact angle as high as 159.61°, and a linearity of 0.9812 between the voltage signal and acceleration. The results indicate that the sensor can be employed for underwater vibration, sound recognition, and vibration monitoring in fields such as shield cutters, holding significant potential for mechanical equipment vibration monitoring and speech-based human-machine interaction.

4.
ACS Nano ; 18(3): 2520-2530, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38197377

RESUMEN

Stretchable flexible strain sensors based on conductive elastomers are rapidly emerging as a highly promising candidate for popular wearable flexible electronic and soft-mechanical sensing devices. However, due to the intrinsic limitations of low fidelity and high hysteresis, existing flexible strain sensors are unable to exploit their full application potential. Herein, a design strategy for a successive three-dimensional crack conductive network is proposed to cope with the uncoordinated variation of the output resistance signal arising from the conductive elastomer. The electrical characteristics of the sensor are dominated by the successive crack conductive network through a greater resistance variation and a concise sensing mechanism. As a result, the developed elastomer bionic strain sensors exhibit excellent sensing performance in terms of a smaller overshoot response, a lower hysteresis (∼2.9%), and an ultralow detection limit (0.00179%). What's more, the proposed strategy is universal and applicable to many conductive elastomers with different conductive fillers (including 0-D, 1-D, and 2-D conductive fillers). This approach improves the sensing signal accuracy and reliability of conductive elastomer strain sensors and holds promising potential for various applications in the fields of e-skin and soft robotic systems.

5.
Orthop Surg ; 16(10): 2401-2409, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043609

RESUMEN

OBJECTIVE: Many methods of acetabular reconstruction with total hip arthroplasty (THA) for Crowe type II and III adult developmental dysplasia of the hip (DDH) acetabular bone defect have been implemented clinically. However, there was no study comparing the results of integrated acetabular prosthesis (IAP) with bone grafting (BG). This study aims to investigate the efficacy of IAP and BG for acetabular reconstruction in Crowe type II and III DDH. METHODS: The clinical data of 45 patients with unilateral Crowe type II and III DDH who underwent THA from January 2020 to January 2023 were retrospectively analyzed. The patients were divided into two groups: 25 patients using 3D-printed IAP (IAP group) and 20 patients using BG (BG group). The operation time and intraoperative blood loss were recorded. The clinical outcomes were assessed by Harris Hip Score (HHS) and full weight-bearing time. The radiological outcomes were evaluated by the radiological examination. Accordingly, intraoperative and postoperative complications were observed as well. The data between the two groups were compared by independent sample t-tests and the Mann-Whitney U rank sum test. RESULTS: There were no significant differences between the two groups in Harris Hip Score (HHS) (preoperative, 6 months postoperative, and the last follow-up), leg length discrepancy (LLD), cup inclination, cup anteversion, vertical center of rotation (V-COR), horizontal center of rotation (H-COR) (p > 0.05). The mean HHS in the IAP group was higher than in the BG group at 1 and 3 months postoperative (p < 0.001). The mean surgical time and blood loss in the IAP group were less than in the BG group (p < 0.001). The mean full weight-bearing time in the IAP group was shorter than in the BG group (p < 0.01). No complications were observed in either group during the follow-up period. CONCLUSION: IAP and BG have similar radiographic outcomes and long-term clinical efficacy in THA for Crowe type II and III DDH, but the IAP technique has higher surgical safety and facilitates the recovery of hip joint function, which is worthy of clinical promotion.


Asunto(s)
Acetábulo , Artroplastia de Reemplazo de Cadera , Trasplante Óseo , Prótesis de Cadera , Humanos , Estudios Retrospectivos , Femenino , Masculino , Artroplastia de Reemplazo de Cadera/métodos , Persona de Mediana Edad , Trasplante Óseo/métodos , Estudios de Casos y Controles , Acetábulo/cirugía , Adulto , Displasia del Desarrollo de la Cadera/cirugía , Anciano , Luxación Congénita de la Cadera/cirugía
6.
ACS Appl Mater Interfaces ; 15(25): 30985-30997, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37315329

RESUMEN

Due to the extreme complexity of the anti-reflective subwavelength structure (ASS) parameters and the drastic limitation of Gaussian beam manufacturing accuracy, it remains a great challenge to manufacture ASS with ultrahigh transmittance on the surface of infrared window materials (such as magnesium fluoride (MgF2)) directly by femtosecond laser. Here, a design, manufacturing, and characterization method that can produce an ultrahigh-performance infrared window by femtosecond laser Bessel beam is proposed. Inspired by the excellent anti-reflective and hydrophobic properties of the special structure of dragonfly wings, a similar structural pattern with grid-distributed truncated cones is designed and optimized for its corresponding parameters to achieve near-full transmittance. The desired submicron structures are successfully fabricated by a Bessel beam after effectively shaping the beam. As a practical application, the bioinspired ASS is manufactured on the surface of MgF2, achieving an ultrahigh transmittance of 99.896% in the broadband of 3-5 µm, ultrawide angle of incidence (over 70% at 75° incidence), and good hydrophobicity with a water contact angle of 99.805°. Results from infrared thermal imaging experiments show that the ultrahigh-transmittance MgF2 window has superior image acquisition and anti-interference performance (3.9-8.6% image contrast enhancement and more accurate image edge recognition) in an environment with multiple interfering factors, which may play a significant role in facilitating applications of infrared thermal imaging technologies in extremely complex environments.

7.
ACS Appl Mater Interfaces ; 14(37): 42723-42733, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36073899

RESUMEN

Flexible strain sensors have received extensive attention due to their broad application prospects. However, a majority of present flexible strain sensors may fail to maintain normal sensing performances upon external loads because of their low strength and thus their performances are affected drastically with increasing loads, which severely restricts large-area popularization and application. Scorpions with hypersensitive vibration slit sensilla are coincident with a similar predicament. Herein, it is revealed that scorpions intelligently use risky slits to detect subtle vibrations, and meanwhile, the distinct layered composites of the main body of this organ prevent catastrophic failure of the sensory structure. Furthermore, the extensive use of flexible sensors will generate a mass of electronic waste just as obsoleting silicon-based devices. Considering mechanical properties and environmental issues, a flexible strain sensor based on an elastomer (Ecoflex)-wrapped fabric with the woven structure was designed and fabricated. Note that introducing a "green" basalt fiber (BF) into a degradable elastomer can effectively avoid environmental issues and significantly enhance the mechanical properties of the sensor. As a result, it shows excellent sensitivity (gauge factor (GF) ∼138.10) and high durability (∼40,000 cycles). Moreover, the reduced graphene oxide (RGO)/BF/Ecoflex flexible strain sensor possesses superior mechanical properties (tensile strength ∼20 MPa) and good flexibility. More significantly, the sensor can maintain normal performances under large external tensions, impact loads, and even underwater environments, providing novel design principles for environmentally friendly flexible sensors under extremely harsh environments.


Asunto(s)
Dispositivos Electrónicos Vestibles , Elastómeros , Silicatos , Silicio , Textiles
8.
RSC Adv ; 12(52): 34117-34125, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36545001

RESUMEN

Flexible pressure sensors have provided an attractive option for potential applications in wearable fields like human motion monitoring or human-machine interfaces. For the development of flexible pressure sensors, achieving high performance or multifunctions are popular research tendencies in recent years, such as improving their sensitivity, working range, or stability. Sponge materials with porous structures have been demonstrated that they are one of the potential substrates for developing novel and excellent flexible pressure sensors. However, for sponge-based pressure sensors, it is still a great challenge to realize a wide range of pressures from Pa level to hundreds kPa level. And how to achieve mechanical robustness remains unsolved. Here, we develop a flexible pressure sensor based on multicarbon nanotubes (MWCNTs) network-coated porous elastomer sponge with a broad range and robust features for use in wearable applications. Specifically, polyurethane (PU) sponge is used as the substrate matrix while dip-coated PU/MWCNTs composites as a conductive layer, achieving a highly bonding effect between the substrate and the conductive material, hence a great mechanical robust advantage is obtained and the working range also is improved. The pressure sensor show range of up to 350 kPa, while the minimum detection threshold is as low as 150 Pa. And before and after rolling by a bicycle or electric motorcycle, the sensor has the almost same responses, exhibiting great robustness.

9.
ACS Appl Mater Interfaces ; 14(25): 29441-29450, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35700417

RESUMEN

Slit sensillum, a unique sensing organ on the scorpion's legs, is composed of several cracks with curved shapes. In fact, it is just its particular morphological distribution and structure that endows the scorpions with ultrasensitive sensing capacity. Here, a scorpion-inspired flexible strain sensor with an ordered concentric circular curved crack array (CCA) was designed and fabricated by using an optimized solvent-induced and template transfer combined method. The morphology of the cracks can be effectively controlled by the heating temperature and the lasting time. Instead of the nonuniform stress distribution induced by disordered cracks, ordered concentric circle curved structures are introduced to generate a uniform stress distribution and larger deformation, which can significantly improve the performance of the strain sensor. Thus, the CCA sensor exhibits ultrahigh sensitivity (GF ∼ 7878.6), excellent stability (over 16 000 cycles), and fast response time (110 ms). Furthermore, the CCA sensor was demonstrated to be feasible for monitoring human motions and detecting noncontact vibration signals, indicating its great potential in human-health monitoring and vibration signal detection applications.

10.
ACS Appl Mater Interfaces ; 14(14): 16885-16893, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35348316

RESUMEN

For advanced flexible strain sensors, it is not difficult to achieve high sensitivity only. However, integrating high sensitivity, high stability, and high durability into one sensor still remains a great challenge. Fortunately, natural creatures with diversified excellent performances have given us a lot of ready-made solutions. Here, scorpion and spiderweb are selected as coupling bionic prototypes, which are famous for their ultrasensitive sensing capacity and excellent structural durability, respectively. Based on that, a bioinspired strain sensor is successfully fabricated. The results demonstrate that the bioinspired strain sensor has a sensitivity of 940.5 in the strain range of 0-1.5% and a sensitivity of 2742.3 between 1.5 and 2.5%. Meantime, this sensor with a spiderweb-like reticular structure has a great improvement in stability and durability. Specifically, the sensor exhibits excellent stability during bending and stretching cycles over 80,000 times. Moreover, the response time and recovery time of the sensor are 169 and 195 ms, respectively. Besides, the sensor also has functions such as vibrating frequency identification due to its low hysteresis. Based on the excellent performance, the sensor can be applied to monitor human body motions serving as wearable electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrónica , Humanos , Monitoreo Fisiológico , Movimiento (Física)
11.
Adv Mater ; 34(17): e2200823, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35231144

RESUMEN

Sensors are widely used in various fields, among which flexible strain sensors that can sense minuscule mechanical signals and are easy to adapt to many irregular surfaces are attractive for structure health monitoring, early detection, and failure prevention in humans, machines, or buildings. In practical applications, subtle and abnormal vibrations generated from any direction are highly desired to detect and even orientate their directions initially to eliminate potential hazards. However, it is challenging for flexible strain sensors to achieve hypersensitivity and omnidirectionality simultaneously due to the restrictions of many materials with anisotropic mechanical/electrical properties and some micro/nanostructures they employed. Herein, it is revealed that the vision-degraded scorpion detects subtle vibrations spatially and omnidirectionally using a slit sensillum with fan-shaped grooves. A bioinspired flexible strain sensor consisting of curved microgrooves arranged around a central circle is devised, exhibiting an unprecedented gauge factor of over 18 000 and stability over 7000 cycles. It can sense and recognize vibrations of diverse input waveforms at different locations, bouncing behaviors of a free-falling bead, and human wrist pulses regardless of sensor installation angles. The geometric designs can be translated to other material systems for potential applications including human health monitoring and engineering failure detection.


Asunto(s)
Nanoestructuras , Dispositivos Electrónicos Vestibles , Anisotropía , Humanos , Vibración
12.
ACS Appl Mater Interfaces ; 13(1): 1967-1978, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372754

RESUMEN

There is currently a growing demand for flexible strain sensors with high performance and water repellency for various applications such as human motion monitoring, sweat or humidity detection, and certain underwater tests. Among these strain sensors, paper-based ones have attracted increasing attention because they coincide with the future development trend of environment-friendly electronic products. However, paper-based electronics are easy to fail when they encounter water and are thus unable to be applied to humid or underwater circumstances. Herein, based on a strategy of coupling bionics inspired by lotus leaf and scorpion, which exhibit superhydrophobic characteristics and ultrasensitive vibration-sensing capacity, respectively, a paper-based strain sensor with high sensitivity and water repellency is successfully fabricated. As a result, the strain sensor exhibits a gauge factor of 263.34, a high strain resolution (0.098%), a fast response time (78 ms), excellent stability over 12,000 cycles, and a water contact angle of 164°. Owing to the bioinspired structures and function mechanisms, the paper-based strain sensor is suitable to not only serve as regular wearable electronics to monitor human motions in real-time but also to detect subtle underwater vibrations, demonstrating its great potential for numerous applications like wearable electronics, water environmental protection, and underwater robots.


Asunto(s)
Monitoreo Fisiológico/instrumentación , Papel , Estrés Mecánico , Dispositivos Electrónicos Vestibles , Adulto , Animales , Biomimética/métodos , Técnicas Biosensibles , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lotus , Masculino , Movimiento , Hojas de la Planta/química , Escorpiones , Vibración , Agua/química
13.
ACS Appl Mater Interfaces ; 13(19): 23103-23112, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33973761

RESUMEN

Natural creatures can always provide perfect strategies for excellent antireflection (AR), which is valuable for photovoltaic industry, optical devices, and flexible displays. However, limited by precision, it is still difficult to guarantee the consistency between the artificial structures and the original biological structures. Here, a novel large-scale flexible AR film is inspired by the cicada wings and successfully fabricated with a recycled template. On the one hand, the adjustable structures on porous templates make it possible to optimize the design of AR structure parameters toward the practical demand. On the other hand, it breaks the limitation of the biological organism size, accomplishing the replication of AR nanostructure units in a large scale. Interestingly, even if the film is covered by enlarged dome cone arrays, it still maintains almost perfect AR property, achieving excellent scale-insensitivity AR performance. This work numerically and experimentally investigates its scale-insensitivity AR performance in detail. Compared with subwavelength nanocones, enlarged cones change the original optical behaviors, and the proportion of transmitted light is reduced while scattering and absorption increase. Based on this, these bio-inspired scale-insensitivity AR arrays could be used in flexible displays, photothermic conversion, solar cells, and so on.


Asunto(s)
Óptica y Fotónica , Diseño de Equipo , Luz
14.
ACS Nano ; 15(12): 19629-19639, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34855345

RESUMEN

Flexible strain sensors have an irreplaceable role in critical and emerging fields, such as electronic skins, flexible robots, and prosthetics. Although numerous efforts have been made to improve sensor sensitivity to meet specific application scenarios, the signal-to-noise ratio (SNR) is an extremely critical and non-negligible indicator, which takes into account higher sensitivity, meaning that they can also detect the noise signals with high sensitivity. Coincidentally, scorpions with ultrasensitive vibration sensilla also face such a dilemma. Here, it is found that the scorpion ingeniously uses the viscoelastic material in front of its slit sensilla to realize efficient preprocessing of the signal. Its mechanism is that the loss factor of materials changes with frequency, affecting energy storage and transmission. Inspired by this ingenious strategy, a bioinspired strain sensor insensitive to a low strain rate was designed using a two-step template transfer method. As a result, its relative change in resistance reached 110% under the same strain (0.3197%) but with different strain rates (0.1 Hz and ∼20 Hz). The noncontact vibration experiments also show different responses to low-frequency vibration and high-frequency impact. Moreover, it can also be used as a typical flexible strain sensor. Under the tensile state, it has a gauge factor (GF) as high as 4596 upon 0.6% strain, and the response time is 140 ms. Therefore, it is expected that this strain sensor will be used in many important ultraprecision measurement fields, especially when the measured signal is small.


Asunto(s)
Dispositivos Electrónicos Vestibles , Vibración
15.
ACS Omega ; 5(33): 21219-21225, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32875258

RESUMEN

A general and efficient method for copper-catalyzed transfer hydrogenation of isoquinolines with an oxazaborolidine-BH3 complex, under mild reaction conditions, is successfully developed. A broad range of isoquinolines has been reduced to the corresponding products with 61-85% yields. The method is applied to the synthesis of biologically active tetrahydrosioquinoline alkaloid (±)-norlaudanosine in 62% yield, which is the key precursor for the preparation of (±)-laudanosine, (±)-N-methyl-laudanosine, and (±)-xylopinine in one or two steps.

16.
Nanoscale ; 12(15): 8536-8545, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32242573

RESUMEN

Since its invention invented in China, paper has been widely used in the world for quite a long time. However, some intrinsic defects servely hinder its application in some extreme conditions, such as underwater or in fire. Herein, a bio-inspired durable paper with robust fluorine-free coatings was fabricated via a two-step spray-deposition technique. It not only consisted of modified SiO2 microspheres and nanoparticles, but also contained an epoxy resin, endowing the paper with multifunctional properties. First, this bio-inspired functional paper showed excellent superhydrophobic and self-cleaning properties with a high static water contact angle (WCA) of 162.7 ± 0.5° and a low sliding angle (SA) of 5.7 ± 0.6°. Moreover, it possessed unusual repellent properties toward multiple aqueous-based liquids and heat-insulated properties. Second, this paper could be used for writing underwater and maintained satisfactory superhydrophobic performance for a long time with a WCA of 153.3 ± 1.8°. Besides, its high mechanical robustness was also experimentally confirmed in harsh working conditions, such as strong acid/alkali, boiling water, abrasion, bending, and folding. Compared with conventional paper, it is anticipated that this bio-inspired functional paper would be really competitive and demonstrate great potential in the field of underwater and fire-proof applications.

17.
RSC Adv ; 9(39): 22740-22748, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35519462

RESUMEN

Recently, there has been tremendous interest in flexible pressure sensors to meet the technological demands of modern society. For practical applications, pressure sensors with high sensitivity at small strains and low detection limits are highly desired. In this paper, inspired by the slit sensillum of the scorpion, a flexible pressure sensor is presented which has regular microcrack arrays and its reversed pattern acts as a tunable contact area of the sensing material microstructures. The template with regular crack arrays generated on the inner surface is fabricated using a solvent-induced swelling method, which provides a simple and economical way to obtain the controllable fabrication of crack arrays without any physical damage to materials. At the same time, the working principle of the bio-inspired pressure sensor is attributed to pressure-dependent variations because of the contact area change between the interlocking polydimethylsiloxane films with the negative and positive patterns of the microcrack arrays. The device shows good performance, with a gauge factor of 27.79 kPa-1 (0-2.4 kPa), a short response/recovery time (111/95 ms), a low detectable pressure limit and excellent reproducibility over 3000 cycles. Practical applications, such as the detection of human motion and touch sensing, are then tested in this work, and the results imply that it should have significant potential applications in numerous fields. Note that the reversed pattern of the slit sensillum of the scorpion is explored to enhance the performance of pressure sensors, thus opening a new route for the fabrication of flexible pressure sensors, even wearable electronics, in a cost-effective and scalable manner.

18.
Nanoscale ; 10(32): 15178-15186, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-29892757

RESUMEN

Biomimetic sensor technology is always superior to existing human technologies. The scorpion, especially the forest scorpion, has a unique ability to detect subtle vibrations, which is attributed to the microcrack-shaped slit sensillum on its legs. Here, the biological sensing mechanism of the typical scorpion (Heterometrus petersii) was intensively studied in order to newly design and significantly improve the flexible strain sensors. Benefiting from the easy-crack property of polystyrene (PS) and using the solvent-induced swelling as well as double template transferring method, regular and controllable microcrack arrays were successfully fabricated on top of polydimethylsiloxane (PDMS). Using this method, any physical damage to PDMS could be effectively avoided. More fortunately, this bio-inspired crack arrays fabricated in this work also had a radial-like pattern similar to the slit sensillum of the scorpion, which was another unexpected imitation. The gauge factor (GF) of the sensor was conservatively evaluated at 5888.89 upon 2% strain and the response time was 297 ms. Afterward, it was demonstrated that the bio-inspired regular microcrack arrays could also significantly enhance the performance of traditional strain sensors, especially in terms of the sensitivity and response time. The practical applications, such as the detection of human motions and surface folding, were also tested in this work, with the results showing significant potential applications in numerous fields. This work changes the traditional waste cracks on some damaged products into valuable things for ultrasensitive mechanical sensors. Moreover, with this manufacturing technique, we could easily realize the simple, low cost and large-scale fabrication of advanced bioinpired sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA