Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2310289, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597769

RESUMEN

The high exciton binding energy (Eb) and sluggish surface reaction kinetics have severely limited the photocatalytic hydrogen production activity of carbon nitride (CN). Herein, a hybrid system consisting of nitrogen defects and Pt single atoms is constructed through a facile self-assembly and photodeposition strategy. Due to the acceleration of exciton dissociation and regulation of local electron density of Pt single atoms along with the introduction of nitrogen defects, the optimized Pt-MCT-3 exhibits a hydrogen production rate of 172.0 µmol h-1 (λ ≥ 420 nm), ≈41 times higher than pristine CN. The apparent quantum yield for the hydrogen production is determined to be 27.1% at 420 nm. The experimental characterizations and theoretical calculations demonstrate that the nitrogen defects act as the electron traps for the exciton dissociation, resulting in a decrease of Eb from 86.92 to 43.20 meV. Simultaneously, the stronger interaction between neighboring nitrogen defects and Pt single atoms directionally drives free electrons to aggregate around Pt single atoms, and tailors the d-band electrons of Pt, forming a moderate binding strength between Pt atoms and H* intermediates.

2.
Phys Rev Lett ; 132(26): 263801, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996306

RESUMEN

Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrystals show localization due to the fractal spectrum and to the transition to diffusive bands via exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic quasicrystal based on electromagnetically induced transparency in a Rb vapor cell. First, we observe the suppression of the wave packet expansion in the Hermitian case. We then discover a new regime, where increasing the non-Hermiticity leads to delocalization, demonstrating that the behavior in non-Hermitian quasicrystals is richer than previously thought.

3.
Langmuir ; 40(1): 604-613, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108826

RESUMEN

Non-noble metal photothermal materials have recently attracted increasing attention as unique alternatives to noble metal-based ones due to advantages like earth abundance, cost-effectiveness, and large-scale application capability. In this study, hierarchical copper sulfide (CuS) nanostructures with tunable flower-like morphologies and dimensional sizes are prepared via a fatty amine-mediated one-pot polyol synthesis. In particular, the addition of fatty amines induces a significant decrease in the overall particle size and lamellar thickness, and their morphologies and sizes could be tuned using different types of fatty amines. The dense stacking of nanosheets with limited sizes in the form of such a unique hierarchical architecture facilitates the interactions of the electromagnetic fields between adjacent nanoplates and enables the creation of abundant hot-spot regions, thus, benefiting the enhanced second near-infrared (NIR-II) light absorptions. The optimized CuS nanoflowers exhibit a photothermal conversion efficiency of 37.6%, realizing a temperature increase of nearly 50 °C within 10 min under 1064 nm laser irradiations at a power density of 1 W cm-2. They also exhibit broad-spectrum antibacterial activity, rendering them promising candidates for combating a spectrum of bacterial infections. The present study offers a feasible strategy to generate nanosheet-based hierarchical CuS nanostructures and validates their promising use in photothermal conversion, which could find important use in NIR-II photothermal therapy.


Asunto(s)
Cobre , Nanoestructuras , Cobre/farmacología , Cobre/química , Nanoestructuras/química , Sulfuros/farmacología , Sulfuros/química , Antibacterianos/farmacología , Aminas , Fototerapia
4.
Nano Lett ; 23(24): 11827-11834, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079388

RESUMEN

Local electric field induced by the lightning-rod effect attracts great attention for regulating the local microenvironment and electronic properties of active sites. Nevertheless, local electric-field-assisted applications are mainly limited to metals with strong surface plasmonic resonance properties (e.g., Au, Ag, and Cu). Herein, we fabricate RuCu snow-like nanosheets (SNSs) with high-curvature nanotips for enhancing the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). Theoretical simulations show that RuCu SNSs can induce a strong local electric field around the sharp nanotips, which favors the accumulation of OH- for HOR and H+ for HER. Cu incorporation can modulate the binding strength of OH* and H*, leading to significantly enhanced HOR and HER performance. Impressively, the mass activity of RuCu SNSs for alkaline HOR is 31.3 times higher than that of RuCu nanocrystals without sharp tips. Besides, the required overpotential for reaching 10 mA cm-2 during HER over RuCu SNSs is 14.0 mV.

5.
J Am Chem Soc ; 145(51): 28166-28175, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38086059

RESUMEN

The Cu single-atom catalyst (SAC) supported on TiO2 exhibits outstanding efficacy in photocatalytic hydrogen evolution. The precise operational mechanism remains a subject of ongoing debate. The focus resides with the interplay linking heightened catalytic activity, dynamic valence state alterations of Cu atoms, and their hybridization with H2O orbitals, manifested in catalyst color changes. Taking anatase TiO2 (101) as a prototypical surface, we perform ab initio quantum dynamics simulation to reveal that the high activity of the Cu-SAC is due to the quasi-planar coordination structure of the Cu atom after H2O adsorption, allowing it to trap photoexcited hot electrons and inject them into the hybridized orbital between Cu and H2O. The observed alterations in the valence state and the coloration can be attributed to the H atom released during H2O dissociation and adsorbed onto the lattice O atom neighboring the Cu-SAC. Notably, this adsorption of H atoms puts the Cu-SAC into an inert state, as opposed to an activating effect reported previously. Our work clarifies the relationship between the high photocatalytic activity and the local dynamic atomic coordination structure, providing atomistic insights into the structural changes occurring during photocatalytic reactions on SACs.

6.
Chemistry ; 29(48): e202301465, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37319122

RESUMEN

This article describes a systematic study of the oxidative etching and regrowth behaviors of Pd nanocrystals, including single-crystal cubes bounded by {100} facets, single-crystal octahedra and tetrahedra enclosed by {111} facets; and multiple-twinned icosahedra covered by {111} facets and twin boundaries. During etching, Pd atoms are preferentially oxidized and removed from the corners regardless of the type of nanocrystal, and the resultant Pd2+ ions are then reduced back to elemental Pd. For cubes and icosahedra, the newly formed Pd atoms are deposited on the {100} facets and twin boundaries, respectively, due to their relatively higher energies. For octahedra and tetrahedra, the Pd atoms self-nucleate in the solution phase, followed by their growth into small particles. We can control the regrowth rate relative to etching rate by varying the concentration of HCl in the reaction solution. As the concentration of HCl is increased, 18-nm Pd cubes are transformed into octahedra of 23, 18, and 13 nm, respectively, in edge length. Due to the absence of regrowth, however, Pd octahedra are transformed into truncated octahedra, cuboctahedra, and spheres with decreasing sizes whereas Pd tetrahedra evolve into truncated tetrahedra and spheres. In contrast, Pd icosahedra with twin boundaries on the surface are converted to asymmetric icosahedra, flower-like icosahedra, and spheres. This work not only advances the understanding of etching and growth behaviors of metal nanocrystals with various shapes and twin structures but also offers an alternative method for controlling their shape and size.

7.
Langmuir ; 39(33): 11788-11796, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37567582

RESUMEN

Frame/skeleton-like nanostructures are of great value in plasmonic catalysis as a result of the synergetic structural advantages arising from both maximized surface atomic exposure and efficient incident light absorptions. Herein, we report the size-tunable fabrication of yolk-shell AuAg nanoparticles containing a spherical core and cuboctahedral skeletons (AuAg YSCNSs), together with the exploration of their applications for assisting the reduction of 4-nitrophenol (4-NP) under ultraviolet-visible (UV-vis) light irradiation. The use of glutathione (GSH) at an appropriate amount to mediate the galvanic replacement reaction between Au@Ag core-shell nanocubes and HAuCl4 is found to be crucial in regulating the shape evolution. Their sizes could be readily tuned by altering the edge lengths of Au@Ag core-shell nanocubes. When working as the photocatalyst assisting the reduction of 4-NP, the AuAg YSCNSs exhibit a higher apparent rate constant under UV-vis light irradiation. The current work demonstrates the feasibility to create skeleton-like noble metal nanocrystals with the shape largely deviated from that of the original template via the "top-down" carving strategy by introducing non-metallic surface doping, which could be potentially extended to other noble metals or alloys.

8.
Nano Lett ; 22(15): 6334-6341, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35895620

RESUMEN

Mechanistic understanding of the effect bulk defects have on carrier dynamics at the quantum level is crucial to suppress associated midgap mediated charge recombination in semiconductors yet many questions remain unexplored. Here, by employing ab initio quantum dynamics simulation and taking BiVO4 with oxygen vacancies (Ov) as a model system we demonstrate a spin protection mechanism for suppressed charge recombination. The carrier lifetime is significantly improved in the high spin defect system. The lifetime can be optimized by tuning the Ov concentration to minimize the nonradiative relaxation. Our work addresses literature ambiguities and contradictions about the role of bulk Ov in charge recombination and provides a route for defect engineering of semiconductors with enhanced carrier dynamics.

9.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959780

RESUMEN

In the ZINC20 database, with the aid of maximum substructure searches, common substructures were obtained from molecules with high-strain-energy and combustion heat values, and further provided domain knowledge on how to design high-energy-density hydrocarbon (HEDH) fuels. Notably, quadricyclane and syntin could be topologically assembled through these substructures, and the corresponding assembled schemes guided the design of 20 fuel molecules (ZD-1 to ZD-20). The fuel properties of the molecules were evaluated by using group-contribution methods and density functional theory (DFT) calculations, where ZD-6 stood out due to the high volumetric net heat of combustion, high specific impulse, low melting point, and acceptable flash point. Based on the neural network model for evaluating the synthetic complexity (SCScore), the estimated value of ZD-6 was close to that of syntin, indicating that the synthetic complexity of ZD-6 was comparable to that of syntin. This work not only provides ZD-6 as a potential HEDH fuel, but also illustrates the superiority of learning design strategies from the data in increasing the understanding of structure and performance relationships and accelerating the development of novel HEDH fuels.

10.
Small ; 18(19): e2201695, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398985

RESUMEN

Gold-copper (Au-Cu) Janus nanostructures (Au-Cu Janus NSs) are successfully prepared using N-oleyl-1,3-propanediamine as capping agent and Cu(acac)2 as the precursor in a typical seeded growth strategy. By preferably depositing Cu atoms on one side of concave cubic Au seeds, the Cu part gradually grows larger as more Cu precursors are added, making the size tuning feasible in the range of 74-156 nm. When employed as an electrocatalyst for electrochemical CO2 reduction (CO2 RR), the Au-Cu Janus NSs display superior performance to Au@Cu core-shell NSs and Cu NPs in terms of C2+ products selectivity (67%) and C2+ partial current density (-0.29 A cm-2 ). Combined experimental verification and theoretical simulations reveal that CO spillover from Au sites to the nearby Cu counterparts would enhance CO coverage and thus promote C-C coupling, highlighting the unique structural advantages of the Au-Cu Janus NSs toward deep reduction of CO2 . The current work provides a facile strategy to fabricate tandem catalyst with a Janus structure and validates its structural advantages toward CO2 RR, which are of critical importance for the rational design of efficient CO2 RR catalyst.

11.
Langmuir ; 38(31): 9669-9677, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35880311

RESUMEN

We report a synthetic strategy to create gold(Au)-based "sphere-on-plate" hybrid nanostructures (SPHNSs). The surface doping of plate-like Au seeds with Pt/Ag atoms is found to be crucial to increase the lattice spacing, inducing island-like deposition of Au atoms via the Volmer-Weber growth mode. The resulting products are featured with the morphology that quasi-spherical nanoparticles are scattered over the nanoplates. Due to the presence of two distinctly dimensioned particles in one entity, the current Au-based SPHNSs exhibit unique dual plasmonic absorptions, where the visible absorbance centered at 546 nm is related to the size of the anchored particles. Arising from such a plasmonic advantage, the Au-based SPHNSs exhibit enhancement in photothermal conversion under laser irradiations at the wavelengths of both 808 and 1064 nm. The current work offers a feasible route to fabricate noble metal hybrid nanostructures involving zero-dimensional (0D) and two-dimensional (2D) structures, which could work as promising materials for photothermal conversion.

12.
Langmuir ; 38(5): 1929-1936, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35077184

RESUMEN

Assembling two-dimensional noble metal nanocrystals into a three-dimensional mesoporous structure is of great value to solve the re-stacking issue for the practical application, which still remains a challenging technique. Herein, we report the one-pot fabrication of gold (Au) nanostructures with a crumpled paper ball-like morphology (Au NCPBs). The success of current work relies on the use of glutathione to crumple the branched Au nanosheets formed during the early stage, into spherical three-dimensional architecture, where the nanosheets are assembled with a mesoporous structure without intimate contact. When working as the agent toward photothermal conversion, the Au NCPBs exhibit enhanced photothermal conversion efficiency (η = 19.9%), as compared to that of flat and wrinkled Au nanosheets. Such an enhancement should be owing to the aggregation-induced effect, where the shortened inter-sheet distance contributes to an increased coupling between the plasmon oscillations/fields of the interacting Au nanosheets. The present study offers a feasible strategy to create spherical architecture of crumpled Au nanosheets and validates their structural advantage in photothermal applications, which could be potentially extended to other metals or alloys.

13.
Phys Chem Chem Phys ; 24(3): 1237-1261, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34935801

RESUMEN

The photocatalyst surface is central to photocatalytic reactions. However, it has been a challenge to explicitly understand both the surface configuration and the structure-dependent photocatalytic properties at the atomic level. First-principles density functional theory (DFT) calculations provide a versatile method that makes up for the lack of experimental surface studies. In DFT calculations, the initial surface model greatly affects the accuracy of the calculation results. Consequently, establishing a more realistic and more reliable material surface models is undoubtedly the first step and the most important link in theoretical calculations. The aim of this Perspective is to provide a general understanding of the methods for the surface modeling of photocatalytic materials in recent years. We begin with a discussion of the basic theories applied in photocatalytic surface research, followed by an explanation of the importance of surface modeling in photocatalysis. We then elaborate on the advantages and disadvantages of the basic surface model and briefly describe the latest surface modeling methods. Finally, we evaluate the rationality of current surface modeling methods. We summarize this Perspective by prospecting the developing directions of photocatalytic surface research in the future. It is believed that a reasonable surface model should be verified by both experimental characterization and theoretical computation with negative feedback.

14.
Nano Lett ; 21(2): 1003-1010, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33411541

RESUMEN

Synthesis of the unconventional phase of noble metal nanocrystals may create new opportunities in exploring intriguing physicochemical properties but remains challenging. In the research field of thin film growth, the interface strain offers a general driving force to stabilize the metastable phase of epitaxial film. Herein we extend this concept to the field of noble metal nanocrystals and report the solution synthesis of metastable face-centered tetragonal Au that has not been discovered before. The successful synthesis relies on the formation of intermetallic AuCu3@Au core-shell structure, where the interface strain stabilizes the metastable fct Au overlayer. Compared with the face-centered cubic Au counterpart, the metastable fct Au shows greatly improved catalytic activity toward CO2 reduction to CO. The density functional theory calculations and spectroscopic studies reveal that the metastable fct Au upshifts the d-band center, which lowers the energy barrier of key intermediate COOH* formation and thus facilitates the reaction kinetics.

15.
Phys Chem Chem Phys ; 23(39): 22743-22749, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34608466

RESUMEN

We report the preparation of a series of heterojunctions made of Ta3N5 and TiO2 nanoparticles that show good properties for photocatalytic hydrogen production. The composite photocatalyst with a light-response range up to 620 nm shows a hydrogen evolution rate of 250 µmol h-1. The apparent quantum efficiency at 330 nm can be as high as 46%. Particularly, normalized spectral studies indicate that the heterojunction is more active upon full-spectrum (without using optical filters) irradiation, and its activity is even superior  to the total activity exhibited upon UV-light irradiation (λ ≤ 420 nm) and visible-infrared light irradiation (λ ≥ 420 nm). Moreover, in situ photodeposition of platinum nanoparticles on the surface of the photocatalyst as well as the band alignment analysis demonstrate the Z-scheme mechanism associated with the photocatalytic process. Specifically, photogenerated electrons from TiO2 will rapidly combine with the photogenerated holes from Ta3N5 through interfacial charge transfer, leaving the more active electrons and holes in Ta3N5 and TiO2, respectively, to facilitate redox reactions. Basically, TiO2 is only UV-light active, while Ta3N5 can be activated under visible-light irradiation. In this case, a synergy effect, upon simultaneous UV-light excitation and visible-light excitation, can be achieved by full-spectrum irradiation, leading to a much higher photocatalytic activity. This work thus provides a favorable and upward direction for the establishment of heterojunctions for high-efficiency hydrogen production and solar energy applications.

16.
Xenobiotica ; 51(7): 859-864, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34000957

RESUMEN

We explored the potential effects of genetic variations on the concentration to dose ratio (CDR) of valproic acid (VPA) in paediatric epilepsy patients.Two hundred and twenty-nine epileptic children on VPA monotherapy were included, and the VPA trough concentrations at steady-state of all subjects were determined.Nineteen single nucleotide polymorphisms (SNPs) of seven selected genes related to the metabolising enzymes and transporters of VPA were identified, and their influences on CDRVPA (a logarithmic transformation was performed if abnormally distributed) were evaluated.UGT2B7 rs7668258 (C>T) TT genotype was associated with a decrease in lnCDRVPA among epileptic children receiving VPA monotherapy (ß=-0.191, p = 0.036). Significantly lower lnCDRVPA was also observed in paediatric patients with UGT1A6 rs2070959 (A>G) GG genotype compared to those AA genotype (ß=-0.270, p = 0.021).This research indicated that UGT2B7 rs7668258 (C>T) and UGT1A6 rs2070959 (A>G) polymorphisms may be correlated to the normalised plasma concentrations of VPA in Chinese epileptic children. The associations could be abolished after Bonferroni's correction and our findings need to be validated in further and larger investigations.


Asunto(s)
Epilepsia , Ácido Valproico , Anticonvulsivantes , Niño , China , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Glucuronosiltransferasa/genética , Humanos , Polimorfismo de Nucleótido Simple
17.
Nano Lett ; 20(12): 8965-8971, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33231457

RESUMEN

Thermo-osmosis driven by temperature gradients generally requires two liquid reservoirs at different temperatures connected by porous bodies or capillaries. We demonstrate, by molecular dynamics simulation, a new phenomenon toward nanoscale thermo-osmosis. Upon heating at a certain region of a nanochannel, multiple nanoscale convective layers are formed and can be manipulated to generate a net fluid transport from one reservoir to another, even without a temperature difference between them. A net unidirectional fluid transport with different rates can be achieved by precisely controlling location of the heated region. The net fluid transport can be enhanced further by tuning liquid-wall interactions. The demonstrated phenomenon provides a strategy for enhancing fluid mixing, which is often inefficient in nanoscale flows. Our finding is promising for chip-level cooling. The heat generated by chips can be employed to produce asymmetric temperature gradients in channels through proper configuration. Coolant liquids can thus be circulated without extra pumps.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(1): 61-66, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33476539

RESUMEN

OBJECTIVE: To study the medication in children with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Wuhan, China, and to provide a reference for rational drug use in clinical practice. METHODS: A retrospective analysis was performed on the medical data of the children who were diagnosed with SARS-CoV-2 infection from January 26 to March 5, 2020. The children were divided into an asymptomatic group with 41 children and a symptomatic group with 73 children. A subgroup analysis was performed to investigate the effect of different antiviral regimens (monotherapy, double therapy, or triple therapy) and whether interferon α-1b was used in combination with azithromycin on the length of hospital stay and the clearance time of SARS-CoV-2 nucleic acid. RESULTS: A total of 114 children with SARS-CoV-2 infection (72 boys and 42 girls) were enrolled. The median age of the children was 7.1 years. The median length of hospital stay was 10 days and the clearance time of SARS-CoV-2 nucleic acid was 6 days. In either group, the subgroup analysis showed no significance differences in the length of hospital stay and the clearance time of SARS-CoV-2 nucleic acid between the subgroups treated with different combinations of antiviral drugs and the subgroups treated with interferon α-1b alone or in combination with azithromycin (P > 0.05). CONCLUSIONS: It is not recommended to use the routine combinations of antiviral drugs for children with SARS-COV-2 infection or combine with azithromycin for the purpose of antiviral therapy.


Asunto(s)
COVID-19 , Antivirales/uso terapéutico , Niño , China , Femenino , Humanos , Masculino , Estudios Retrospectivos , SARS-CoV-2
19.
Eur J Clin Pharmacol ; 76(2): 277-284, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31745585

RESUMEN

PURPOSE: Acute nephrotoxicity is a common adverse reaction of tacrolimus therapy; however, its risk factors in pediatric nephrotic syndrome (NS) remain to be evaluated. The objective of this study was to investigate the risk factors and characteristics of tacrolimus-induced acute nephrotoxicity in children with NS. METHODS: Past records of children with NS admitted to our hospital from 2014 to 2018 were reviewed. The incidence and characteristics of nephrotoxicity were analyzed. Multivariate logistic regression analysis was used to identify the risk factors of nephrotoxicity. A clinically applicable risk score was developed and validated. RESULTS: Tacrolimus-induced nephrotoxicity occurred in 25 of 129 patients, 13 patients were grade 1, and the renal function was recovered in 22 patients. Multivariate regression analysis showed that the maximum trough concentrations (C12h) of tacrolimus (OR, 1.48; 95% CI, 1.16 to 1.88; P < 0.001), huaiqihuang granules (OR, 0.095; 95% CI, 0.014 to 0.66; P = 0.017), and diarrhea (OR, 22.00; 95% CI, 1.58 to 306.92; P = 0.022) were independently associated with tacrolimus-induced nephrotoxicity. The maximum C12h were significantly higher in patients with nephrotoxicity (median 9.0 ng/ml) and the cut-off value for acute nephrotoxicity was 6.5 ng/ml. The area under the receiver operating characteristic curve was 0.821 for the proposed model based on the observations used to create the model and 0.817 obtained from k-fold cross-validation. CONCLUSIONS: High trough concentration of tacrolimus and diarrhea can potentiate the risk of tacrolimus-induced acute nephrotoxicity in children with NS, while huaiqihuang granules can protect this condition.


Asunto(s)
Inmunosupresores/administración & dosificación , Enfermedades Renales/inducido químicamente , Síndrome Nefrótico/tratamiento farmacológico , Tacrolimus/administración & dosificación , Estudios de Casos y Controles , Niño , Preescolar , Diarrea/epidemiología , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Inmunosupresores/efectos adversos , Inmunosupresores/farmacocinética , Enfermedades Renales/epidemiología , Masculino , Estudios Retrospectivos , Factores de Riesgo , Tacrolimus/efectos adversos , Tacrolimus/farmacocinética
20.
J Chem Phys ; 152(2): 024706, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31941307

RESUMEN

Controversies on the surface termination of α-Fe2O3 (0001) focus on its surface stoichiometry dependence on the oxygen chemical potential. Density functional theory (DFT) calculations applying the commonly accepted Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional to a strongly correlated system predict the best matching surface termination, but would produce a delocalization error, resulting in an inappropriate bandgap, and thus are not applicable for comprehensive hematite system studies. Besides, the widely applied PBE+U scheme cannot provide evidence for existence of some of the successfully synthesized stoichiometric α-Fe2O3 (0001) surfaces. Hence, a better scheme is needed for hematite DFT studies. This work investigates whether the strongly constrained and appropriately normed (SCAN) approximation reported by Perdew et al. could provide an improved result for the as-mentioned problem, and whether SCAN can be applied to hematite systems. By comparing the results calculated with the PBE, SCAN, PBE+U, and SCAN+U schemes, we find that SCAN and SCAN+U improves the description of the electronic structure of different stoichiometric α-Fe2O3 (0001) surfaces with respect to the PBE results, and that they give a consistent prediction of the surface terminations. Besides, the bulk lattice constants and the bulk density of states are also improved with the SCAN functional. This study provides a general characterization of the α-Fe2O3 (0001) surfaces and rationalizes how the SCAN approximation improves the results of hematite surface calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA