Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sens Actuators B Chem ; 245: 1050-1061, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28966475

RESUMEN

Sorting and enumeration of immune cells from blood are critical operations involved in many clinical applications. Conventional methods for sorting and counting immune cells from blood, such as flow cytometry and hemocytometers, are tedious, inaccurate, and difficult for implementation for point-of-care (POC) testing. Herein we developed a microscale centrifugal technology termed Centrifugal Microfluidic Chip (CMC) capable of sorting immune cells from blood and in situ cellular analysis in a laboratory setting. Operation of the CMC entailed a blood specimen layered on a density gradient medium and centrifuged in microfluidic channels where immune cell subpopulations could rapidly be sorted into distinct layers according to their density differentials. We systematically studied effects of different blocking molecules for surface passivation of the CMC. We further demonstrated the applicability of CMCs for rapid separation of minimally processed human whole blood without affecting immune cell viability. Multi-color imaging and analysis of immune cell distributions and enrichment such as recovery and purity rates of peripheral blood mononuclear cells (PBMCs) were demonstrated using CMCs. Given its design and operation simplicity, portability, blood cell sorting efficiency, and in situ cellular analysis capability, the CMC holds promise for blood-based diagnosis and disease monitoring in POC applications.

2.
Small ; 12(33): 4521-30, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27409528

RESUMEN

Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies.


Asunto(s)
Microfluídica/métodos , Movimiento , Presión , Vacio , Colágeno/química , Combinación de Medicamentos , Células HL-60 , Humanos , Laminina/química , Proteoglicanos/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA