Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011796, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060599

RESUMEN

Plant viruses seriously disrupt crop growth and development, and classic protein-targeted antiviral drugs could not provide complete protection against them. It is urgent to develop antiviral compounds with novel targets. Photodynamic therapy shows potential in controlling agricultural pests, but nonselective damage from reactive oxygen species (ROS) unexpectedly affects healthy tissues. A G-quadruplex (G4)-forming sequence in the tobacco mosaic virus (TMV) genome was identified to interfere the RNA replication in vitro, and affect the proliferation of TMV in tobacco. N-methyl mesoporphyrin IX stabilizing the G4 structure exhibited inhibition against viral proliferation, which was comparable to the inhibition effect of ribavirin. This indicated that G4 could work as an antiviral target. The large conjugate planes shared by G4 ligands and photosensitizers (PSs) remind us that the PSs could work as antiviral agents by targeting G4 in the genome of TMV. Chlorin e6 (Ce6) was identified to stabilize the G4 structure in the dark and selectively cleave the G4 sequence by producing ROS upon LED-light irradiation, leading to 92.2% inhibition against TMV in vivo, which is higher than that of commercial ningnanmycin. The inhibition of Ce6 was lost against the mutant variants lacking the G4-forming sequence. These findings indicated that the G-quadruplex in the TMV genome worked as an important structural element regulating viral proliferation, and could act as the antiviral target of photodynamic therapy.


Asunto(s)
Fotoquimioterapia , Virus del Mosaico del Tabaco , Especies Reactivas de Oxígeno/farmacología , Antivirales/farmacología , Antivirales/química , Proliferación Celular , Relación Estructura-Actividad
2.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866991

RESUMEN

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Asunto(s)
Adenosina , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Metiltransferasas , MicroARNs , Miocitos del Músculo Liso , Arteria Pulmonar , Factor 4 Similar a Kruppel/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Arteria Pulmonar/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Miocitos del Músculo Liso/metabolismo , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratas , Fenotipo , Masculino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Ratones Endogámicos C57BL , Remodelación Vascular/genética , Ratas Sprague-Dawley , Humanos
3.
Am J Nephrol ; 55(1): 86-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37734331

RESUMEN

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Asunto(s)
Dietilhexil Ftalato , MicroARNs , Ácidos Ftálicos , Animales , Ratones , Masculino , Dietilhexil Ftalato/toxicidad , Aceite de Maíz/farmacología , Ratones Endogámicos C57BL , Antioxidantes , Riñón , MicroARNs/genética , MicroARNs/farmacología , ARN Mensajero , Polifenoles/farmacología , Polifenoles/uso terapéutico , Guanosina Trifosfato/farmacología
4.
Eur Radiol ; 34(2): 745-754, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37589899

RESUMEN

OBJECTIVE: To investigate whether the feeding artery (FA) feature can aid in discriminating small hepatocellular carcinoma (HCC) using the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) from precancerous lesions. METHODS: Between June 2017 and May 2021, a total of 347 patients with 351 precancerous liver lesions or small HCCs who underwent CEUS were enrolled. Two independent radiologists assigned LI-RADS categories to all lesions and assessed the presence of the FA feature, which was used as an ancillary feature to either upgrade or downgrade the LI-RADS category. The diagnostic performance of CEUS LI-RADS, both with and without the FA feature, was evaluated based on accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: The FA feature was found to be more prevalent in HCC (85.54%, p < 0.001) than in regenerative nodules (RNs, 29.73%), low-grade dysplastic nodules (LGDNs, 33.33%), and high-grade dysplastic nodules (HGDNs, 55.26%). Furthermore, the presence of arterial phase hyperenhancement (APHE), washout (WO), and FA in liver nodules was associated with a higher expression of GPC-3 and Ki-67 compared to the group without these features (p < 0.001). After adjusting, the sensitivity and accuracy of LR-5 for HCC improved from 68.67% (95%CI: 62.46%, 74.30%) to 77.51% (95%CI: 71.72%, 82.44%) and from 69.23% (95%CI: 64.11%, 74.02%) to 73.79% (95%CI: 68.86%, 78.31%), respectively. CONCLUSION: The FA feature is a valuable feature for distinguishing small HCC and precancerous lesions and could be added as a possible ancillary feature in CEUS LI-RADS which was backed up by biomarkers. CLINICAL RELEVANCE STATEMENT: The presence of a feeding artery is a valuable imaging feature in the differentiation of HCC and precancerous lesions. Incorporating this characteristic in the CEUS LI-RADS can enhance the diagnostic ability. KEY POINTS: • Feeding artery is more frequent in HCC than in regenerative nodules, low-grade dysplastic nodules, and high-grade dysplastic nodules. • Feeding artery feature is a valuable ancillary feature for CEUS LI-RADS to differentiate regenerative nodules, low-grade dysplastic nodules, high-grade dysplastic nodules, and HCC. • The existence of feeding artery, arterial phase hyperenhancement, and washout is associated with more GPC-3 positive expression and higher Ki-67 expression than the group without these features.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lesiones Precancerosas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Antígeno Ki-67 , Medios de Contraste/farmacología , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Arterias/patología , Hiperplasia/patología , Lesiones Precancerosas/patología , Sensibilidad y Especificidad
5.
Helicobacter ; 29(4): e13109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38951739

RESUMEN

BACKGROUND: Integrin-linked kinase (ILK) is crucial in solid tumors by regulating the Hippo-Yes-associated protein 1 (YAP) pathway. This study aimed to uncover how Helicobacter pylori influences ILK levels and its role in regulating YAP during H. pylori-induced gastric cancer. MATERIALS AND METHODS: GES-1 cells with stable Ilk knockdown and overexpression and a mouse carcinogenesis model for H. pylori infection were constructed. And ILK, the phosphorylated mammalian STE20-like protein kinase 1 (MST1), large tumor suppressor 1 (LATS1; S909, T1079), and YAP (S109, S127) were detected in cells, and mice by western blotting, as well as fluorescence intensity of YAP were assayed by immunofluorescence. YAP downstream genes Igfbp4 and Ctgf, the pathological changes and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1beta (IL-1ß), and nitric oxide (NO) levels in mice gastric tissues were detected by real-time PCR, H&E, and ELISA assays. RESULTS: In this study, stable Ilk knockdown cells exhibited significantly higher phosphorylated levels of MST1, LATS1, and YAP, as well as increased YAP in the nuclei of GES-1 cells. Conversely, cells with Ilk overexpression showed opposite results. H. pylori infection led to decreased ILK levels in gastric epithelial cells but increased ILK levels in gastric cancer cell lines (MGC803, SGC7901) and gastric cancer tissues in mice. Treatment with the ILK inhibitor OST-T315 elevated the phosphorylated MST, LATS1, and YAP levels, and inhibited the mRNA levels of Igfbp4 and Ctgf at 44, 48 week-aged mice. OST-T315 also reduced the release of TNF-α, IL-6, IL-1ß, and NO, as well as the progression of gastric cancer caused by H. pylori and N-Nitroso-N-methylurea (NMU) treatment. CONCLUSION: Upon initiation of gastric tumorigenesis signals, H. pylori increases ILK levels and suppresses Hippo signaling, thereby promoting YAP activation and gastric cancer progression. ILK can serve as a potential prevention target to impede H. pylori-induced gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Ratones , Humanos , Modelos Animales de Enfermedad , Línea Celular , Masculino
6.
Inorg Chem ; 63(26): 12146-12155, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946339

RESUMEN

The electrochemical conversion of nitrate pollutants into value-added ammonia (NH3) is an appealing alternative synthetic route for sustainable NH3 production. However, the development of the electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by unruly reactants and products at the interface and the accompanied sluggish kinetic rate. In this work, a built-in positive valence space is successfully constructed over FeCu nanocrystals to rationally regulate interfacial component concentrations and positively shift the chemical equilibrium. With positive valence Cu optimizing the active surface, the space between the stern and shear layers becomes positive, which is able to continuously attract the negatively charged NO3- reactant and repulse the positively charged NH4+ product even under high current density, thus significantly boosting the NO3RR kinetics. The system with a built-in positive valence space affords an ampere-level NO3RR performance with the highest NH3 yield rate of 150.27 mg h-1 mg-1 at -1.3 V versus RHE with an outstanding NH3 current density of 189.53 mA cm-2, as well as a superior Faradaic efficiency (FE) of 97.26% at -1.2 V versus RHE. The strategy proposed here underscores the importance of interfacial concentration regulation and can find wider applicability in other electrochemical syntheses suffering from sluggish kinetics.

7.
Inorg Chem ; 63(43): 20697-20704, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39425660

RESUMEN

High-entropy alloy (HEA) electrocatalysts have exhibited remarkable catalytic performance because of their synergistic interactions among multiple metals. However, the growth mechanism of HEAs remains elusive, primarily due to the constraints imposed by the current synthesis methodologies for HEAs. In this work, an innovative electrodeposition method was developed to fabricate Pt-based nanocomposites (Pt1Bi2Co1Cu1Ni1/CC), comprising HEA nanosheets and carbon cloths (CCs). The reaction system could be effectively monitored by taking samples out from the system during the reaction process, facilitating in-depth insight into the growth mechanism underlying the material formation. In particular, Pt1Bi2Co1Cu1Ni1/CC nanocomposites show superior methanol oxidation reaction (MOR) performance (mass activity up to 5.02 A mgPt-1). Upon structural analysis, the d-band center of Pt1Bi2Co1Cu1Ni1/CC is lower in comparison with that of Pt1Bi2/CC and Pt/CC, demonstrating the formation of a rich-electron structure. Both the uniformity of HEAs and the carbon-supported effect could provide additional active sites. These findings suggest that the strong electronic interaction within HEAs and additional active sites can effectively modulate the catalytic structure of Pt, which benefits the enhanced CO tolerance and MOR performance.

8.
Inorg Chem ; 63(43): 20802-20810, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39425657

RESUMEN

As a critical component for the oxygen reduction reaction (ORR), platinum (Pt) catalysts exhibit promising catalytic performance in High-temperature-proton exchange membrane fuel cells (HT-PEMFCs). Despite their success, HT-PEMFCs primarily utilize phosphoric acid-doped polybenzimidazole (PA-PBI) as the proton exchange membrane, and the phosphoric acid within the PBI matrix tends to leach onto the Pt-based layers, easily causing toxicity. Herein, we first propose UiO-66@Pt3Co1-T composites with precisely engineered interfacial structures. The UiO-66@Pt3Co1-T exhibits an octahedral porous framework with uniform structural dimensions and even distribution of surface nanoparticles, which demonstrate superior ORR performance compared to commercial Pt/C. The unique structure and morphology of the composites also exhibit a favorable half-wave potential in different concentrations of phosphoric acid electrolyte, regulated by the phosphoric acid adsorption site and intensity.This finding suggests that the incorporation of Co could effectively modulate the Pt d-band center, thereby enhancing the ORR performance. Furthermore, the selective adsorption of phosphoric acid by ZrO2 enables precise control over the phosphoric acid distribution. Notably, the retention of the octahedral framework post high-temperature treatment facilitates the establishment of dual transport pathways for gases and protons, leading to a stable and efficient triple-phase boundary.

9.
Phys Chem Chem Phys ; 26(37): 24564-24576, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39268710

RESUMEN

Transforming growth factor ß type 1 receptor (TGFßR1), a crucial serine-threonine kinase, is central to the TGFß/Smad signaling pathway, governing cellular processes like growth, differentiation, apoptosis, and immune response. This pathway is closely linked to the epithelial-mesenchymal transition (EMT) process, which plays an important role in the metastasis of hepatocellular carcinoma (HCC). To date, only limited inhibitors targeting TGFßR1 have entered clinical trials, yet they encounter challenges, notably high toxicity, in clinical applications. Herein, an efficient virtual screening pipeline was developed. Eighty compounds were screened from a pool of over 17 million molecules based on docking scores and binding free energy. Four compounds were manually selected with the assistance of enhanced sampling method BPMD (binding pose metadynamics). The binding stability of these four compounds complexed with TGFßR1 was subsequently studied through long-timescale conventional molecular dynamics simulations. The three most promising compounds were subjected to in vitro bioactivity assays. Cpd272 demonstrated moderate inhibitory activity against TGFßR1, with an IC50 value of 1.57 ± 0.33 µM. Moreover, it exhibited cytotoxic effects on human hepatocellular carcinoma cell line Bel-7402. By shedding light on the binding mode of the receptor-ligand complexes, Cpd272 was identified as a hit compound featuring a novel urea-based scaffold capable of effectively inhibiting TGFßR1.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Tipo I de Factor de Crecimiento Transformador beta , Urea , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Urea/química , Urea/farmacología , Urea/análogos & derivados , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología
10.
J Phys Chem A ; 128(31): 6337-6350, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39047261

RESUMEN

Photoinduced excited-state energy transfer (EET) processes play an important role in solar energy conversions. Owing to their excellent photoharvesting and exciton-transport properties, phenylene ethynylene (PE) dendrimers display great potential for improving the efficiency of solar cells. In this work, we investigated the intramolecular EET dynamics in a dendrimer composed of two linear PE units (2-ring and 3-ring) using a fully quantum description based on the tensor network method. We first constructed a diabatic model Hamiltonian based on the electronic structure calculations. Using this diabatic vibronic coupling model, we tried to obtain the main features of the EET dynamics in terms of the several diabatic models with different numbers of vibrational modes (from 4 modes to 129 modes) and to explore the corresponding vibronic coupling interactions. The results show that the EET in this PE dendrimer is ultrafast. Four modes of A' symmetry play dominant roles in the dynamics; the remaining 86 modes of A' symmetry can dampen the electronic coherence; and the modes of A″ symmetry do not exhibit significant influence on the EET process. Overall, the first-order intrastate vibronic coupling terms show the dominant role in the EET dynamics, while the second-order intrastate vibronic coupling terms cause damping of the electronic coherence and slow down the overall EET process. This work provides a microscopic understanding of the EET dynamics in PE dendrimers.

11.
Dig Dis Sci ; 69(9): 3442-3449, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009916

RESUMEN

BACKGROUND: Rectal indomethacin reduces pancreatitis following endoscopic retrograde cholangiopancreatography (ERCP). However, there is insufficient evidence regarding its added benefits in patients already receiving prophylactic pancreatic stenting. Our goal was to evaluate the impact of indomethacin in high-risk patients undergoing pancreatic stenting. METHODS: A cohort study was conducted on all patients who underwent the rescue cannulation technique for challenging bile duct cannulation (selected high-risk patients). Patients were split into two groups based on the prophylaxis method for post-ERCP pancreatitis (PEP): one receiving a combination of indomethacin and pancreatic stenting, while the other received pancreatic stenting alone. Comparative analyses were carried out on PEP, hyperamylasemia, gastrointestinal bleeding, and postoperative hospital stay among post-ERCP pancreatitis patients. RESULTS: Between November 2017 and May 2023, a total of 607 patients with native papillae were enrolled, with 140 grouped into the indomethacin plus stent group and 467 into the stent alone group. The overall PEP rate was 4.4% in the entire cohort, with no statistical differences observed between the groups in terms of PEP rates (P = 0.407), mild PEP (P = 0.340), moderate to severe PEP (P = 1.000), hyperamylasemia (P = 0.543), gastrointestinal bleeding (P = 0.392), and postoperative hospital stay (P = 0.521). Furthermore, sensitivity analysis using multivariable analysis also validated these findings. CONCLUSIONS: Indomethacin did not reduce the incidence or severity of PEP in high-risk patients who routinely received prophylactic pancreatic stent placement. Therefore, the additional administration of rectal indomethacin to further mitigate PEP appears to be not necessary.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Indometacina , Pancreatitis , Stents , Humanos , Indometacina/uso terapéutico , Indometacina/administración & dosificación , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Pancreatitis/prevención & control , Pancreatitis/etiología , Pancreatitis/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Stents/efectos adversos , Anciano , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Administración Rectal , Estudios Retrospectivos , Tiempo de Internación/estadística & datos numéricos , Factores de Riesgo , Estudios de Cohortes , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología
12.
Dig Dis Sci ; 69(6): 2215-2222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594433

RESUMEN

BACKGROUND: When unintentional pancreatic duct access occurs during difficult biliary cannulation, the double guidewire (DGW) or transpancreatic sphincterotomy (TPS) may be utilized. DGW can be easily switched to TPS due to the existing guidewire in the pancreatic duct. However, the efficacy of TPS after DGW, named sequential DGW-TPS technique, versus primary TPS has not been assessed. AIMS: Our aim was to compare the benefits and adverse events of sequential DGW-TPS technique and primary TPS. METHODS: We performed a comparative retrospective cohort study that enrolled a total of 117 patients with native papillae. The patients were divided into one of 2 groups according to the primary bile duct access technique (sequential DGW-TPS or primary TPS), both with pancreatic stenting. RESULTS: Between November 2017 and May 2023, a total of 84 patients were grouped into sequential DGW-TPS and 33 into primary TPS. The overall post-ERCP pancreatitis (PEP) rate was 4.3% in the entire cohort, with no statistical differences were observed between the groups in terms of PEP rates (P = 0.927), PEP severity (P = 1.000), first biliary cannulation success (P = 0.621), overall cannulation success (P = 1.000), hyperamylasemia incidence (P = 0.241), elevated amylase levels (P = 0.881), and postoperative hospital stay (P = 0.185). Furthermore, these results remained consistent in multivariable regression analysis. CONCLUSIONS: The sequential DGW-TPS technique showed a comparable safety and biliary cannulation success rate to primary TPS in difficult biliary cannulation. Given the potential long-term complications associated with TPS, DGW should be first if inadvertent pancreatic access occurs, with TPS serving as second only if DGW fails.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Conductos Pancreáticos , Pancreatitis , Esfinterotomía Endoscópica , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Esfinterotomía Endoscópica/métodos , Esfinterotomía Endoscópica/efectos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Pancreatitis/etiología , Pancreatitis/epidemiología , Conductos Pancreáticos/cirugía , Cateterismo/métodos , Cateterismo/efectos adversos , Cateterismo/instrumentación , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Resultado del Tratamiento , Stents , Adulto
13.
Ecotoxicol Environ Saf ; 269: 115749, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039854

RESUMEN

Micro(nano)plastics are prevalent in the environment, and prolonged exposure to them represents a threat to human health. The goal of this study is to assess the health risk of long-term exposure to nanoplastics (NPs) at environmental concentrations on the intestinal mechanical and immune barrier in mice. In this study, mice were provided drinking water containing polystyrene NPs (PS-NPs; 0.1, 1, and 10 mg·L-1) for 32 consecutive weeks. The levels of endocytosis proteins caveolin and clathrin and of tight junctional proteins claudin-1, occludin, and ZO-1, and morphological changes, proportion of lymphocytes B in MLNs and lymphocytes T in IELs and LPLs were determined by immunohistochemistry, hematoxylin-eosin, and flow cytometry assays in the intestinal tissues of mice at 28 weeks. The activities or concentrations of ROS, SOD, MDA, and GSH-Px and inflammatory factors (IL-1ß, IL-6, and TNF-α) in the intestinal tissues of mice were measured by ELISA at 12, 16, 20, 24, and 32 weeks. Compared with the control group, oral ingested PS-NPs entered the intestinal tissues of mice and upregulated expression levels of the clathrin and caveolin. The intestinal tissue structure of mice in the PS-NPs (1 and 10 mg·L-1) exposure groups showed significant abnormalities, such as villus erosion, decreased of crypts numbers and large infiltration of inflammatory cells. Exposure to 0.1 mg·L-1 PS-NPs decreased occludin protein levels, but not claudin-1 and ZO-1 levels. The levels of these three tight junction proteins decreased significantly in the 1 and 10 mg·L-1 PS-NPs exposed groups. Exposure to PS-NPs led to a significant time- and dose-dependent increase in ROS and MDA levels, and concurrently decreased GSH-Px and SOD contents. Exposure to PS-NPs increased the proportion of B cells in MLNs, and decreased the proportion of CD8+ T cells in IELs and LPLs. The levels of pro-inflammatory cytokines IL-6, TNF-α and IL-1ß were markedly elevated after PS-NPs exposure. Long-term PS-NPs exposure impaired intestinal mechanical and immune barrier, and indicate a potentially significant threat to human health.


Asunto(s)
Nanopartículas , Poliestirenos , Humanos , Poliestirenos/toxicidad , Microplásticos , Linfocitos T CD8-positivos , Interleucina-6 , Ocludina , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Caveolinas , Clatrina , Superóxido Dismutasa
14.
BMC Med Educ ; 24(1): 738, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982322

RESUMEN

BACKGROUND: The purpose of this study was to evaluate the effectiveness and efficiency of implementing a data-driven blended online-offline (DDBOO) teaching approach in the medicinal chemistry course. METHODS: A total of 118 third-year students majoring in pharmacy were enrolled from September 2021 to January 2022. The participants were randomly assigned to either the DDBOO teaching group or the traditional lecture-based learning (LBL) group for medicinal chemistry. Pre- and post-class quizzes were administered, along with an anonymous questionnaire distributed to both groups to assess students' perceptions and experiences. RESULTS: There was no significant difference in the pre-class quiz scores between the DDBOO and LBL groups (T=-0.637, P = 0.822). However, after class, the mean quiz score of the DDBOO group was significantly higher than that of the LBL group (T = 3.742, P < 0.001). Furthermore, the scores for learning interest, learning motivation, self-learning skill, mastery of basic knowledge, teamwork skills, problem-solving ability, innovation ability, and satisfaction, as measured by the questionnaire, were significantly higher in the DDBOO group than in the traditional group (all P < 0.05). CONCLUSION: The DDBOO teaching method effectively enhances students' academic performance and satisfaction. Further research and promotion of this approach are warranted.


Asunto(s)
Química Farmacéutica , Educación en Farmacia , Evaluación Educacional , Estudiantes de Farmacia , Femenino , Humanos , Masculino , Adulto Joven , Química Farmacéutica/educación , Instrucción por Computador/métodos , Curriculum , Educación a Distancia , Educación en Farmacia/métodos , Encuestas y Cuestionarios
15.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279241

RESUMEN

We previously discovered WS-6 as a new antidepressant in correlation to its function of stimulating neurogenesis. Herein, several different scaffolds (stilbene, 1,3-diphenyl 1-propene, 1,3-diphenyl 2-propene, 1,2-diphenyl acrylo-1-nitrile, 1,2-diphenyl acrylo-2-nitrile, 1,3-diphenyl trimethylamine), further varied through substitutions of twelve amide substituents plus the addition of a methylene unit and an inverted amide, were examined to elucidate the SARs for promoting adult rat neurogenesis. Most of the compounds could stimulate proliferation of progenitors, but just a few chemicals possessing a specific structural profile, exemplified by diphenyl acrylonitrile 29b, 32a, and 32b, showed better activity than the clinical drug NSI-189 in promoting newborn cells differentiation into mature neurons. The most potent diphenyl acrylonitrile 32b had an excellent brain AUC to plasma AUC ratio (B/P = 1.6), suggesting its potential for further development as a new lead.


Asunto(s)
Acrilonitrilo , Alquenos , Compuestos de Bifenilo , Ratas , Animales , Acrilonitrilo/farmacología , Neurogénesis , Hipocampo , Nitrilos/farmacología , Amidas
16.
Angew Chem Int Ed Engl ; : e202416832, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315906

RESUMEN

Electrosynthesis of urea from co-reduction of carbon dioxide and nitrate is a promising alternative to the industrial process. However, the overwhelming existence of proton and nitrate as well as the insufficient supply of CO2 at the reaction interface usually result in complex product distributions from individual nitrate reduction or hydrogen evolution, instead of C-N coupling. In this work, we systematically optimize this microenvironment through orderly coating of bilayer polymer to specifically tackle the above challenges. Polymer of intrinsic microporosity is chosen as the upper polymer to achieve physical sieving, realizing low water diffusivity for suppressing hydrogen evolution and high gas permeability for smooth mass transfer of CO2 at the same time. Polyaniline with abundant basic amino groups is capable of triggering chemical interaction with acidic CO2 molecules, so that is used as the underlying polymer to serve as CO2 concentrator and facilitate the carbon source supply for C-N coupling. Within this tailored microenvironment, a maximum urea generation yield rate of 1671.6 µg h-1 mg-1 and a high Faradaic efficiency of 75.3% are delivered once coupled with efficient electrocatalyst with neighboring active sites, which is among the most efficient system of urea electrosynthesis.

17.
Cancer Sci ; 114(2): 410-422, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36310143

RESUMEN

Functional reprogramming of tumor-associated macrophages (TAMs) is crucial to their potent tumor-supportive capacity. However, the molecular mechanism behind the reprogramming process remains poorly understood. Here, we identify engulfment and cell motility protein 1 (ELMO1) as a crucial player for TAM reprogramming in colorectal cancer (CRC). The expression of ELMO1 in stromal but not epithelial tumor cells was positively associated with advanced clinical stage and poor disease-free survival in CRC. An increase in ELMO1 expression was specifically found in TAMs, but not in other multiple nonmalignant stromal cells. Gain- and loss-of-function assays indicated ELMO1 reprogrammed macrophages to a TAM-like phenotype through Rac1 activation. In turn, ELMO1-reprogrammed macrophages were shown to not only facilitate the malignant behaviors of CRC cells but exhibited potent phagocytosis of tumor cells. Taken together, our work underscores the importance of ELMO1 in determining functional reprogramming of TAMs and could provide new insights on potential therapeutic strategies against CRC.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología
18.
EMBO J ; 38(14): e99945, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304624

RESUMEN

TGF-ß controls a variety of cellular functions during development. Abnormal TGF-ß responses are commonly found in human diseases such as cancer, suggesting that TGF-ß signaling must be tightly regulated. Here, we report that protein tyrosine phosphatase non-receptor 3 (PTPN3) profoundly potentiates TGF-ß signaling independent of its phosphatase activity. PTPN3 stabilizes TGF-ß type I receptor (TßRI) through attenuating the interaction between Smurf2 and TßRI. Consequently, PTPN3 facilitates TGF-ß-induced R-Smad phosphorylation, transcriptional responses, and subsequent physiological responses. Importantly, the leucine-to-arginine substitution at amino acid residue 232 (L232R) of PTPN3, a frequent mutation found in intrahepatic cholangiocarcinoma (ICC), disables its role in enhancing TGF-ß signaling and abolishes its tumor-suppressive function. Our findings have revealed a vital role of PTPN3 in regulating TGF-ß signaling during normal physiology and pathogenesis.


Asunto(s)
Neoplasias Hepáticas/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 3/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 3/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Trasplante de Neoplasias , Fosforilación , Estabilidad Proteica , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Microb Pathog ; 184: 106388, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832834

RESUMEN

YAP participates in autophagy associated with many diseases. In this study, we demonstrate that YAP promotes autophagy by interacting with beclin 1, upregulating beclin 1 and LC3B-II protein expression, and promoting autophagosome formation after H. pylori infection in a vacuolating cytotoxin A-dependent manner. The protein levels of ß-catenin in the cytoplasm and nuclei of GES-1 cells and the mRNA levels of Axin2, Myc, Lgr5, and Ccnd1 were increased in H. pylori-infected cells or YAP-overexpressed cells, but were decreased in YAP-silenced cells. The ß-catenin inhibitor XAV939 significantly downregulated autophagy, whereas the activator LiCl showed opposite effects. An H. pylori-infected mouse model of gastric carcinoma was successfully established. The mouse model showed that H. pylori infection, when combined with NMU, promoted the tumorigenesis of gastric tissues; increased IL-1ß, IL-6, and TNF-α levels; promoted NO release; and increased the expression of beclin 1, LC3B-II more than NMU alone. Chloroquine inhibited these phenomena, but did not completely attenuate the effects of H. pylori. These results demonstrate that chloroquine can be used as a drug for the treatment of H. pylori-related gastric cancer, but the treatment should simultaneously remove H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Ratones , Animales , beta Catenina/metabolismo , Cloroquina/farmacología , Cloroquina/metabolismo , Beclina-1/metabolismo , Beclina-1/farmacología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias Gástricas/genética , Autofagia , Modelos Animales de Enfermedad , Infecciones por Helicobacter/metabolismo , Mucosa Gástrica/patología
20.
Environ Sci Technol ; 57(20): 7809-7817, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37155686

RESUMEN

The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Difusión , Cinética , Transporte Biológico , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA