Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 596(7871): 227-231, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381235

RESUMEN

Topological superfluidity is an important concept in electronic materials as well as ultracold atomic gases1. However, although progress has been made by hybridizing superconductors with topological substrates, the search for a material-natural or artificial-that intrinsically exhibits topological superfluidity has been ongoing since the discovery of the superfluid 3He-A phase2. Here we report evidence for a globally chiral atomic superfluid, induced by interaction-driven time-reversal symmetry breaking in the second Bloch band of an optical lattice with hexagonal boron nitride geometry. This realizes a long-lived Bose-Einstein condensate of 87Rb atoms beyond present limits to orbitally featureless scenarios in the lowest Bloch band. Time-of-flight and band mapping measurements reveal that the local phases and orbital rotations of atoms are spontaneously ordered into a vortex array, showing evidence of the emergence of global angular momentum across the entire lattice. A phenomenological effective model is used to capture the dynamics of Bogoliubov quasi-particle excitations above the ground state, which are shown to exhibit a topological band structure. The observed bosonic phase is expected to exhibit phenomena that are conceptually distinct from, but related to, the quantum anomalous Hall effect3-7 in electronic condensed matter.

2.
Phys Rev Lett ; 129(13): 133001, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36206415

RESUMEN

We analytically identify a new class of quantum scars protected by spatiotemporal translation symmetries, dubbed Floquet-Bloch scars. They are distinguished from previous (quasi-)static scars by a rigid spectral pairing only possible in Floquet systems, where strong interaction and drivings equalize the quasienergy corrections to all scars and maintain their spectral spacings against generic bilinear perturbations. Scars then enforce the spatial localization and rigid discrete time crystal (DTC) oscillations as verified numerically in a trimerized kagome lattice model relevant to recent cold atom experiments. Our analytical solutions offer a potential scheme to understand the mechanisms for more generic translation-invariant DTCs.

3.
Phys Rev Lett ; 124(21): 216601, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530681

RESUMEN

Higher-order topological insulators (HOTIs) have emerged as a new class of phases, whose robust in-gap "corner" modes arise from the bulk higher-order multipoles beyond the dipoles in conventional topological insulators. Here, we incorporate Floquet driving into HOTIs, and report for the first time a dynamical polarization theory with anomalous nonequilibrium multipoles. Further, a proposal to detect not only corner states but also their dynamical origin in cold atoms is demonstrated, with the latter one never achieved before. Experimental determination of anomalous Floquet corner modes is also proposed.

4.
Phys Rev Lett ; 125(26): 260402, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449715

RESUMEN

The Nambu-Goldstone (NG) modes in a nonrelativistic system can be classified into two types from their characteristic features: being of either an odd (type I) or an even (type II) power energy-momentum dispersion. Conventionally, the type-II NG modes may universally arise from spontaneous breaking of noncommutative symmetry pairs. Here, we predict a novel type of quadratically dispersed NG modes that emerges in mixed s and p band Bose superfluids in an optical lattice and, unlike the conventional type-II NG modes, cannot be solely interpreted with the celebrated symmetry-based argument. Instead, we show that the existence of such modes has a profound connection to the topological transition on projective complex order-parameter space. The detection scheme is also proposed. Our Letter reveals a new universal mechanism for emergence of type-II NG modes, which bridges intrinsically the Landau symmetry-breaking and topological theories.

5.
Phys Rev Lett ; 124(5): 057001, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32083918

RESUMEN

We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multistep driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floquet quadrupole and octupole insulators with zero- and/or π-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from the full unitary return map and show its phase bands contain Weyl singularities whose topological charges form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of a Floquet Hamiltonian gives a pair of Z_{2} invariant ν_{0} and ν_{π} which fully characterize the higher-order topology and predict the appearance of zero- and π-corner modes. Our work establishes a systematic route to construct and characterize Floquet higher-order topological phases.

6.
Phys Rev Lett ; 122(18): 180401, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144880

RESUMEN

A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases, respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation and discuss the phase transitions between the two SPT phases and their experimental signatures.

7.
Phys Rev Lett ; 120(11): 110603, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29601754

RESUMEN

Time crystals, a phase showing spontaneous breaking of time-translation symmetry, has been an intriguing subject for systems far away from equilibrium. Recent experiments found such a phase in both the presence and the absence of localization, while in theories localization by disorder is usually assumed a priori. In this work, we point out that time crystals can generally exist in systems without disorder. A series of clean quasi-one-dimensional models under Floquet driving are proposed to demonstrate this unexpected result in principle. Robust time crystalline orders are found in the strongly interacting regime along with the emergent integrals of motion in the dynamical system, which can be characterized by level statistics and the out-of-time-ordered correlators. We propose two cold atom experimental schemes to realize the clean Floquet time crystals, one by making use of dipolar gases and another by synthetic dimensions.

8.
Phys Rev Lett ; 119(5): 050401, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949736

RESUMEN

Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1/2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J_{1}-J_{2} model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.

9.
Rep Prog Phys ; 79(11): 116401, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27651388

RESUMEN

The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.

10.
Phys Rev Lett ; 117(8): 085301, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27588862

RESUMEN

We study the topological properties of elementary excitations in a staggered p_{x}±ip_{y} Bose-Einstein condensate realized in recent orbital optical lattice experiments. The condensate wave function may be viewed as a configuration space variant of the famous p_{x}+ip_{y} momentum space order parameter of strontium ruthenate superconductors. We show that its elementary excitation spectrum possesses Dirac bosons with π Berry flux. Remarkably, if we induce a population imbalance between the p_{x}+ip_{y} and p_{x}-ip_{y} condensate components, a gap opens up in the excitation spectrum resulting in a nonzero Chern invariant and topologically protected edge excitation modes. We give a detailed description of how our proposal can be implemented with standard experimental technology.

11.
Phys Rev Lett ; 114(12): 125303, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860754

RESUMEN

We study a mixture of spin-1 bosonic and spin-1/2 fermionic cold atoms, e.g., ^{87}Rb and ^{6}Li, confined in a triangular optical lattice. With fermions at 3/4 filling, Fermi surface nesting leads to spontaneous formation of various spin textures of bosons in the ground state, such as collinear, coplanar, and even noncoplanar spin orders. The phase diagram is mapped out with varying boson tunneling and Bose-Fermi interactions. Most significantly, in one noncoplanar state the mixture is found to exhibit a spontaneous quantum Hall effect in fermions and crystalline superfluidity in bosons, both driven by interaction.

12.
Phys Rev Lett ; 114(10): 100406, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25815913

RESUMEN

Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.

13.
Phys Rev Lett ; 114(4): 045302, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679898

RESUMEN

Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases.

14.
Phys Rev Lett ; 112(6): 067202, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24580706

RESUMEN

We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.

15.
Phys Rev Lett ; 108(17): 175302, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22680880

RESUMEN

We study bosons loaded in a one-dimensional optical lattice of twofold p-orbital degeneracy at each site. Our numerical simulations find an anti-ferro-orbital p(x)+ip(y), a homogeneous p(x) Mott-insulator phase, and two kinds of superfluid phases distinguished by the orbital order (anti-ferro-orbital and paraorbital). The anti-ferro-orbital order breaks time-reversal symmetry. Experimentally observable evidence is predicted for the phase transition between the two different superfluid phases. We also discover that the quantum noise measurement is able to provide a concrete evidence of time-reversal symmetry breaking in the first Mott phase.

16.
Phys Rev Lett ; 104(16): 165303, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482062

RESUMEN

We show that topological phases with fractional excitations can occur in two-dimensional ultracold dipolar gases on a particular class of optical lattices. Because of the dipolar interaction and lattice confinement, a quantum dimer model emerges naturally as the effective theory describing the low-energy behaviors of these systems under well-controlled approximations. The desired hierarchy of interaction energy scales is achieved by controlling the anisotropy of the orbital dimers and the dipole moments of particles. Experimental realization and detection of various phases are discussed, as well as the possible relevance for quantum computation.

17.
Phys Rev Lett ; 103(14): 140404, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19905551

RESUMEN

We study the thermodynamics of a one-dimensional attractive Fermi gas (the Gaudin-Yang model) with spin imbalance. The exact solution has been known from the thermodynamic Bethe ansatz for decades, but it involves an infinite number of coupled nonlinear integral equations whose physics is difficult to extract. Here the solution is analytically reduced to a simple, powerful set of four algebraic equations. The simplified equations become universal and exact in the experimental regime of strong interaction and relatively low temperature. Using the new formulation, we discuss the qualitative features of finite-temperature crossover and make quantitative predictions on the density profiles in traps. We propose a practical two-stage scheme to achieve accurate thermometry for a trapped spin-imbalanced Fermi gas.

18.
Sci Bull (Beijing) ; 66(13): 1253-1255, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36654141
19.
Nat Commun ; 5: 5064, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25266996

RESUMEN

Chiral p-wave superfluids are fascinating topological quantum states of matter that have been found in the liquid (3)He-A phase and arguably in the electronic Sr2RuO4 superconductor. They are fundamentally related to the fractional 5/2 quantum Hall state, which supports fractional exotic excitations. Past studies show that they require spin-triplet pairing of fermions by p-wave interaction. Here we report that a p-wave chiral superfluid state can arise from spin-singlet pairing for an s-wave interacting atomic Fermi gas in an optical lattice. This p-wave state is conceptually distinct from all previous conventional p-wave states as it is for the centre-of-mass motion, instead of the relative motion. It leads to spontaneous generation of angular momentum, finite Chern numbers and topologically protected chiral fermionic zero modes bounded to domain walls, all occuring at a higher critical temperature in relative scales. Signature quantities are predicted for the cold atom experimental condition.

20.
Nat Commun ; 5: 3205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492473

RESUMEN

Recent experiments on p-orbital atomic bosons have suggested the emergence of a spectacular ultracold superfluid with staggered orbital currents in optical lattices. This raises fundamental questions concerning the effects of thermal fluctuations as well as possible ways of directly observing such chiral order. Here we show via Monte Carlo simulations that thermal fluctuations destroy this superfluid in an unexpected two-step process, unveiling an intermediate normal phase with spontaneously broken time-reversal symmetry, dubbed a 'chiral Bose liquid'. For integer fillings (n≥2) in the chiral Mott regime, thermal fluctuations are captured by an effective orbital Ising model, and Onsager's powerful exact solution is adopted to determine the transition from this intermediate liquid to the para-orbital normal phase at high temperature. A lattice quench is designed to convert the staggered angular momentum, previously thought by experts difficult to directly probe, into coherent orbital oscillations, providing a time-resolved dynamical signature of chiral order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA