Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nano Lett ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976365

RESUMEN

Sealing wet porous membranes is a major challenge when fabricating cell encapsulation devices. Herein, we report the development of an Autoclavable Transparent Thermal Cutter (ATTC) for reliably sealing wet nanofibrous membranes. Notably, the ATTC is autoclavable and transparent, thus enabling in situ visualization of the sealing process in a sterile environment and ensuring an appropriate seal. In addition, the ATTC could generate smooth, arbitrary-shaped sealing ends with excellent mechanical properties when sealing PA6, PVDF, and TPU nanofibrous tubes and PP microporous membranes. Importantly, the ATTC could reliably seal wet nanofibrous tubes, which can shoulder a burst pressure up to 313.2 ± 19.3 kPa without bursting at the sealing ends. Furthermore, the ATTC sealing process is highly compatible with the fabrication of cell encapsulation devices, as verified by viability, proliferation, cell escape, and cell function tests. We believe that the ATTC could be used to reliably seal cell encapsulation devices with minimal side effects.

2.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161808

RESUMEN

Short text representation is one of the basic and key tasks of NLP. The traditional method is to simply merge the bag-of-words model and the topic model, which may lead to the problem of ambiguity in semantic information, and leave topic information sparse. We propose an unsupervised text representation method that involves fusing word embeddings and extended topic information. Following this, two fusion strategies of weighted word embeddings and extended topic information are designed: static linear fusion and dynamic fusion. This method can highlight important semantic information, flexibly fuse topic information, and improve the capabilities of short text representation. We use classification and prediction tasks to verify the effectiveness of the method. The testing results show that the method is valid.

3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768970

RESUMEN

The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorophyceae/enzimología , Proteasas de Cisteína/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Proteínas Algáceas/química , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/fisiología , Chlorophyceae/genética , Clorofila/biosíntesis , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Microalgas/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Transformación Genética
4.
Mar Drugs ; 17(12)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842293

RESUMEN

Haematococcus pluvialis is widely distributed in the world and well known as the richest natural source of astaxanthin that is a strong antioxidant with excellent commercial value. The pathway of astaxanthin biosynthesis in H. pluvialis has been documented as an enzymatic reaction. Several enzymes have been reported, but their isoforms or homologs have not been investigated genome-wide. To better understand the astaxanthin biosynthesis pathway in H. pluvialis, eight candidates of the geranylgeranyl pyrophosphate synthase gene (HpGGPPS) predicted from Iso-seq data were isolated in this study. The length of coding region of these candidates varied from 960 bp to 1272 bp, composing of 7-9 exons. The putative amino acids of all candidates composed the signature domain of GGPPS gene. However, the motifs in the domain region are varied, indicating different bio-functions. Phylogenetic analysis revealed eight candidates can be clustered into three groups. Only two candidates in Group1 encode the synthase participating in the astaxanthin formation. The yield of astaxanthin from these two candidates, 7.1 mg/g (DW) and 6.5 mg/g (DW) respectively, is significant higher than that from CrtE (2.4 mg/g DW), a GGPPS gene from Pantoea ananatis. This study provides a potential productive pathway for astaxanthin synthesis.


Asunto(s)
Antioxidantes/aislamiento & purificación , Chlorophyceae/química , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Genoma , Filogenia , Xantófilas/aislamiento & purificación
5.
J Phys Condens Matter ; 36(26)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537284

RESUMEN

Supercapacitors (SCs) have become one of the most popular energy-storage devices for high power density and fast charging/discharging capability. Polyaniline is a class of conductive polymer materials with ultra-high specific capacitance, and the excellent mechanical properties will play a key role in the research of flexible SCs. The synergistic effect between polyaniline and graphene is often used to overcome their respective inherent shortcomings, thus the high-performance polyaniline-graphene based nanocomposite electrode materials can be prepared. The development of graphene-polyaniline nanocomposites as electrode materials for SCs depends on their excellent microstructure design. However, it is still difficult to seek a balance between graphene performance and functionalization to improve the weak interfacial interaction between graphene and polyaniline. In this manuscript, the latest preparation methods, research progress and research results of graphene-polyaniline nanocomposites on SCs are reviewed, and the optimization of electrode structures and performances is discussed. Finally, the prospect of graphene-polyaniline composites is expected.

6.
Polymers (Basel) ; 16(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794537

RESUMEN

Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment.

7.
Front Plant Sci ; 13: 903764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668806

RESUMEN

The histone acetyltransferases (HATs), together with histone deacetylases, regulate the gene transcription related to various biological processes, including stress responses in eukaryotes. This study found a member of HATs (HpGCN5) from a transcriptome of the economically important microalgae Haematococcus pluvialis. Its expression pattern responding to multiple abiotic stresses and its correlation with transcription factors and genes involved in triacylglycerols and astaxanthin biosynthesis under stress conditions were evaluated, aiming to discover its potential biological function. The isolated HpGCN5 was 1,712 bp in length encoding 415 amino acids. The signature domains of Acetyltransf_1 and BROMO were presented, as the GCN5 gene from Arabidopsis and Saccharomyces cerevisiae, confirming that HpGCN5 belongs to the GCN5 subfamily of the GNAT superfamily. The phylogenetic analysis revealed that HpGCN5 is grouped with GNAT genes from algae and is closer to that from higher plants, compared with yeast, animal, fungus, and bacteria. It was predicted that HpGCN5 is composed of 10 exons and contains multiple stress-related cis-elements in the promoter region, revealing its potential role in stress regulation. Real-time quantitative PCR revealed that HpGCN5 responds to high light and high salt stresses in similar behavior, evidenced by their down-regulation exposing to stresses. Differently, HpGCN5 expression was significantly induced by SA and Nitrogen-depletion stresses at the early stage but was dropped back after then. The correlation network analysis suggested that HpGCN5 has a strong correlation with major genes and a transcription factor involved in astaxanthin biosynthesis. Besides, the correlation was only found between HpGCN5 and a few genes involved in triacylglycerols biosynthesis. Therefore, this study proposed that HpGCN5 might play a role in the regulation of astaxanthin biosynthesis. This study firstly examined the role of HATs in stress regulation and results will enrich our understanding of the role of HATs in microalgae.

8.
Comput Intell Neurosci ; 2022: 4582480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222628

RESUMEN

Topic recognition technology has been commonly applied to identify different categories of news topics from the vast amount of web information, which has a wide application prospect in the field of online public opinion monitoring, news recommendation, and so on. However, it is very challenging to effectively utilize key feature information such as syntax and semantics in the text to improve topic recognition accuracy. Some researchers proposed to combine the topic model with the word embedding model, whose results had shown that this approach could enrich text representation and benefit natural language processing downstream tasks. However, for the topic recognition problem of news texts, there is currently no standard way of combining topic model and word embedding model. Besides, some existing similar approaches were more complex and did not consider the fusion between topic distribution of different granularity and word embedding information. Therefore, this paper proposes a novel text representation method based on word embedding enhancement and further forms a full-process topic recognition framework for news text. In contrast to traditional topic recognition methods, this framework is designed to use the probabilistic topic model LDA, the word embedding models Word2vec and Glove to fully extract and integrate the topic distribution, semantic knowledge, and syntactic relationship of the text, and then use popular classifiers to automatically recognize the topic categories of news based on the obtained text representation vectors. As a result, the proposed framework can take advantage of the relationship between document and topic and the context information, which improves the expressive ability and reduces the dimensionality. Based on the two benchmark datasets of 20NewsGroup and BBC News, the experimental results verify the effectiveness and superiority of the proposed method based on word embedding enhancement for the news topic recognition problem.


Asunto(s)
Procesamiento de Lenguaje Natural , Semántica , Modelos Estadísticos
9.
Sci Rep ; 12(1): 8053, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577855

RESUMEN

In the field of network security, although there has been related work on software vulnerability detection based on classic machine learning, detection ability is directly proportional to the scale of training data. A quantum neural network has been proven to solve the memory bottleneck problem of classical machine learning, so it has far-reaching prospects in the field of vulnerability detection. To fill the gap in this field, we propose a quantum neural network structure named QDENN for software vulnerability detection. This work is the first attempt to implement word embedding of vulnerability codes based on a quantum neural network, which proves the feasibility of a quantum neural network in the field of vulnerability detection. Experiments demonstrate that our proposed QDENN can effectively solve the inconsistent input length problem of quantum neural networks and the problem of batch processing with long sentences. Furthermore, it can give full play to the advantages of quantum computing and realize a vulnerability detection model at the cost of a small amount of measurement. Compared to other quantum neural networks, our proposed QDENN can achieve higher vulnerability detection accuracy. On the sub dataset with a small-scale interval, the model accuracy rate reaches 99%. On each subinterval data, the best average vulnerability detection accuracy of the model reaches 86.3%.


Asunto(s)
Algoritmos , Metodologías Computacionales , Redes Neurales de la Computación , Teoría Cuántica , Programas Informáticos
10.
Sci Total Environ ; 768: 144604, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33444867

RESUMEN

Fe-modified biochar (FeBC) has been considered for aqueous hexavalent chromium (Cr(VI)) removal, but a better understanding is needed with respect to the removal behavior, chemical processes, and removal mechanisms under aerobic and anaerobic conditions. Aqueous Cr(VI) removal was evaluated using unmodified (BC) and FeBC. The Cr(VI) was completely removed in a pH range of 2-10. The removal behavior was properly depicted using pseudo-second-order (PSO) and Langmuir models under aerobic conditions, and using PSO and Freundlich models under anaerobic conditions. Removal rate and capacity were enhanced by up to 3.8 times under anaerobic conditions. Desorption experiments indicated removed Cr in FeBC was stable except under strong acid condition. X-ray absorption spectroscopy (XAS) analysis suggested removed Cr in FeBC was 100% in Cr(III) form and bound to Fe with a bond length of 3.01 Å in the stable form of Fe(III)nCr(III)(1-n)(OOH). The removal mechanisms of Cr(VI) under aerobic conditions by FeBC mainly included electrostatic adsorption, chemical reduction, and complex precipitation.


Asunto(s)
Sincrotrones , Contaminantes Químicos del Agua , Adsorción , Anaerobiosis , Carbón Orgánico , Cromo/análisis , Compuestos Férricos , Contaminantes Químicos del Agua/análisis
11.
Nanomaterials (Basel) ; 10(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113822

RESUMEN

Light trapping in single nanowires (NWs) is of vital importance for photovoltaic applications. However, circular NWs (CNWs) can limit their light-trapping ability due to high geometrical symmetry. In this work, we present a detailed study of light trapping in single silicon NWs with an elliptical cross-section (ENWs). We demonstrate that the ENWs exhibit significantly enhanced light trapping compared with the CNWs, which can be ascribed to the symmetry-broken structure that can orthogonalize the direction of light illumination and the leaky mode resonances (LMRs). That is, the elliptical cross-section can simultaneously increase the light path length by increasing the vertical axis and reshape the LMR modes by decreasing the horizontal axis. We found that the light absorption can be engineered via tuning the horizontal and vertical axes, the photocurrent is significantly enhanced by 374.0% (150.3%, 74.1%) or 146.1% (61.0%, 35.3%) in comparison with that of the CNWs with the same diameter as the horizontal axis of 100 (200, 400) nm or the vertical axis of 1000 nm, respectively. This work advances our understanding of how to improve light trapping based on the symmetry breaking from the CNWs to ENWs and provides a rational way for designing high-efficiency single NW photovoltaic devices.

12.
Sci Total Environ ; 719: 137435, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32114231

RESUMEN

Improved surface characteristics and incorporated Fe, S, and Cl species are reported in Fe-modified biochar, which makes it a prospective material for Hg(II) removal. In this study, aqueous Hg(II) was removed from solution by unmodified, FeCl3-modified, and FeSO4-modified biochars pyrolyzed at 300, 600, or 900 °C. Higher pyrolytic temperature resulted in higher removal efficiency, with the biochars pyrolyzed at 900 °C removing >96% of Hg(II). Fe-modification enhanced Hg(II) removal for biochars pyrolyzed at 600 °C (from 88% to >95%) or 900 °C (from 96% to 99%). Based on synchronous extended X-ray absorption fine structure (EXAFS) analysis, Hg coordinated to S in modified and unmodified biochars pyrolyzed at 900 °C, where thiol was reported, and in FeSO4-modified biochars pyrolyzed at 600 or 900 °C, where sulfide was recognized; in other biochars, Hg bound to O or Cl. Additionally, confocal micro-X-ray fluorescence imaging (CMXRFI) demonstrated Hg was distributed in agreement with S in biochars where HgS was formed; otherwise, Hg distribution was influenced by Hg species in solution and the pore characteristics of the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications and optimizing modification methods in groundwater remediation.


Asunto(s)
Mercurio/análisis , Adsorción , Carbón Orgánico , Sulfuros , Sincrotrones
13.
Nanomaterials (Basel) ; 10(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322726

RESUMEN

Ultrafine ZrB2-ZrC composite powders were synthesized via a radiofrequency (RF) thermal plasma process. Numerical simulation and thermodynamic analysis were conducted to predict the synthesis process, and experimental work was performed accordingly to demonstrate its feasibility. The as-prepared samples were characterized by XRD, FESEM, particle size analyzer, nitrogen/oxygen analyzer, Hall flowmeter, and the Brunner-Emmet-Teller (BET) measurements. The thermodynamic analysis indicated that ZrB2 was preferentially generated, rather than ZrC, and numerical simulation revealed that the solid raw materials could disperse well in the gaseous reactants, and experimental work showed that free carbon particles were easily removed from the products and the elements of Zr, B, C, and O exhibited a uniform distribution. Finally, ZrB2-ZrC composite powders with a particle size of about 100 nm were obtained, the surface area of which was 32.15 m2/g and the apparent density was 0.57 g/cm3.

14.
Environ Pollut ; 265(Pt A): 115002, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32563950

RESUMEN

Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl3-modified, and FeSO4-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO4-modified biochars after aqua regia digestion was significantly lower than in FeCl3-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)-Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.


Asunto(s)
Carbón Orgánico , Mercurio , Adsorción , Ácido Clorhídrico , Ácido Nítrico , Extractos Vegetales , Sincrotrones
15.
Nanomaterials (Basel) ; 10(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887500

RESUMEN

Single nanowires (NWs) are of great importance for optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that, with appropriate thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW) and the NW only coated with the outer shell (OSNW) and the inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the transition modes of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be engineered via tuning the thickness and the refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual-shell design and provides a new choice for designing high-efficiency single NW photovoltaic devices.

16.
Materials (Basel) ; 12(13)2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31277239

RESUMEN

Fouling is a great problem that significantly affects the continuous operation for large-scale radio-frequency (RF) thermal plasma synthesizing nanopowders. In order to eliminate or weaken the phenomenon, numerical simulations based on FLUENT software were founded to investigate the effect of operation parameters, including feeding style of central gas and sheath gas, on plasma torches. It is shown that the tangential feeding style of central gas brings serious negative axial velocity regions, which always forces the synthesized nanopowders to "back-mix", and further leads to the fouling of the quartz tube. Moreover, it is shown that sheath gas should be tangentially fed into the plasma reactor to further eliminate the gas stream's back-mixing. However, when this feeding style is applied, although the negative axial velocity region is decreased, the plasma gas and kinetic energy of the vapor phase near the wall of the plasma reactor are less and lower, respectively; as a result, that plasma flame is more difficult to be arced. A new plasma arcing method by way of feeding gun instead of torch wall was proposed and put in use. The fouling problem has been well solved and plasma arcing is well ensured, and as a result, the experiment on large-scale production of nanopowders can be carried out for 8 h without any interruption, and synthesized Si and Al2O3 nanopowders exhibit good dispersion and sphericity.

17.
Materials (Basel) ; 12(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071982

RESUMEN

Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction.

18.
Front Genet ; 9: 260, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079079

RESUMEN

Polyploidization occurs widely in eukaryotes, and especially in plants. Polyploid plants and some fishes have been commercialized. Typically, severe genomic perturbations immediately follow polyploidization and little is known about how polyploid offspring survives the genetic and epigenetic changes. Investigations into this require the identification of genes related to polyploidization and the discrimination of dosage-balance from paternal and maternal copies, and regardless of the mechanism being either autopolyploidization or allopolyploidization. New approaches and technologies may discern the mosaic of novel gene functions gained through the recombination of paternal and maternal genes in allopolyploidization. Modifications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) with CRISPR-associated system (Cas) protein 9 (CRISPR/Cas9) have been employed in studies of polyploidization of plants. However, the approach has seldom been applied to polyploidization in vertebrates. Herein, we use CRISPR/Cas9 to trace gene-fate in tetraploid goldfish, and specifically to identify the functional differentiation of two divergent copies of fgf20a, which are expressed differently throughout embryonic development. We expect this gene editing system will be applicable to studies of polyploids and the genetic improvement of polyploid livestock.

19.
Zhonghua Er Bi Yan Hou Ke Za Zhi ; 37(6): 415-7, 2002 Dec.
Artículo en Zh | MEDLINE | ID: mdl-12966798

RESUMEN

OBJECTIVE: To explore the effect of the modified (Uvulopalatopharyngoplasty, UPPP) where uvula is reserved completely and the soft palate is folded in the operation. METHODS: 36 patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS) (30 men, 6 women) underwent operation. The uvula and the muscles of the soft palate were reserved completely, and the soft palate was folded during the operation. RESULTS: 31 patients (86.1%) reported improvement of snoring and daytime somnolence. 30 patients (83.33%) showed a decrease of at least 50% in the apnea and hypopnea indices (AHI). No velopalatal insufficiency occurred. CONCLUSION: The modified UPPP not only enlarges pharyngeal cavity, but also avoids the postoperative complications. The modified UPPP could be better than the traditional operation.


Asunto(s)
Paladar Blando/cirugía , Apnea Obstructiva del Sueño/cirugía , Úvula/cirugía , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA