Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(8): 1356-1372.e26, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35395179

RESUMEN

Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.


Asunto(s)
Neoplasias de la Mama , Microbiota , Metástasis de la Neoplasia , Animales , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Células Neoplásicas Circulantes/patología
2.
Nat Methods ; 20(12): 2021-2033, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919421

RESUMEN

Organoid culture has been extensively exploited for normal tissue reconstruction and disease modeling. However, it is still challenging to establish organoids that mimic in vivo-like architecture, size and function under homeostatic conditions. Here we describe the development of a long-term adult stem cell-derived mammary mini gland culture system that supports robust three-dimensional outgrowths recapitulating the morphology, scale, cellular context and transcriptional heterogeneity of the normal mammary gland. The self-organization ability of stem cells and the stability of the outgrowths were determined by a coordinated combination of extracellular matrix, environmental signals and dynamic physiological cycles. We show that these mini glands were hormone responsive and could recapitulate the entire postnatal mammary development including puberty, estrus cycle, lactation and involution. We also observed that these mini glands maintained the presence of mammary stem cells and could also recapitulate the fate transition from embryonic bipotency to postnatal unipotency in lineage tracing assays. In addition, upon induction of oncogene expression in the mini glands, we observed tumor initiation in vitro and in vivo in a mouse model. Together, this study provides an experimental system that can support a dynamic miniature mammary gland for the study of physiologically relevant, complex biological processes.


Asunto(s)
Glándulas Mamarias Animales , Células Madre , Ratones , Femenino , Animales , Glándulas Mamarias Animales/metabolismo , Carcinogénesis , Células Epiteliales
3.
Planta ; 260(3): 65, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073585

RESUMEN

MAIN CONCLUSION: This study revealed the transcriptome-wide m6A methylation profile under drought stress and found that TaETC9 might regulate drought tolerance through mediating RNA methylation in wheat. Drought is one of the most destructive environmental constraints limiting crop growth and development. N6-methyladenosine (m6A) is a prevalent and important post-transcriptional modification in various eukaryotic RNA molecules, playing the crucial role in regulating drought response in plants. However, the significance of m6A in wheat (Triticum aestivum L.), particularly its involvment in drought response, remains underexplored. In this study, we investigated the transcriptome-wide m6A profile under drought stress using parallel m6A immunoprecipitation sequencing (MeRIP-seq). Totally, 4221 m6A peaks in 3733 m6A-modified genes were obtained, of which 373 methylated peaks exhibited differential expression between the control (CK) and drought-stressed treatments. These m6A loci were significantly enriched in proximity to stop codons and within the 3'-untranslated region. Integration of MeRIP-seq and RNA-seq revealed a positive correlation between m6A methylation and mRNA abundance and the genes displaying both differential methylation and expression were obtained. Finally, qRT-PCR analyses were further performed and the results found that the m6A-binding protein (TaETC9) showed significant up-regulation, while the m6A demethylase (TaALKBH10B) was significantly down-regulated under drought stress, contributing to increased m6A levels. Furthermore, the loss-of-function mutant of TaECT9 displayed significantly higher drought sensitivity compared to the wild type, highlighting its role in regulating drought tolerance. This study reported the first wheat m6A profile associated with drought stress, laying the groundwork for unraveling the potential role of RNA methylation in drought responses and enhancing stress tolerance in wheat through epigenetic approaches.


Asunto(s)
Adenosina , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Triticum , Triticum/genética , Triticum/fisiología , Metilación , Adenosina/análogos & derivados , Adenosina/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Respir Res ; 25(1): 313, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154161

RESUMEN

BACKGROUND: Due to a special hemodynamic feature, pulmonary vascular disease in pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) has two stages: reversible and irreversible. So far, the mechanism involved in the transition from reversible to irreversible stage is elusive. Moreover, no recognized and reliable assessments to distinguish these two stages are available. Furthermore, we found that compared with control and reversible PAH, thrombospondin-4 (THBS4) was significantly upregulated in irreversible group by bioinformatic analysis. Hence, we further verify and investigate the expression and role of THBS4 in PAH-CHD. METHODS: We established the monocrotaline plus aorto-cava shunt-induced (MCT-AV) rat model. We measured the expression of THBS4 in lung tissues from MCT-AV rats. Double immunofluorescence staining of lung tissue for THBS4 and α-SMA (biomarker of smooth muscle cells) or vWF (biomarker of endothelial cells) to identify the location of THBS4 in the pulmonary artery. Primary pulmonary artery smooth muscle cells (PASMCs) were cultivated, identified, and used in this study. THBS4 was inhibited and overexpressed by siRNA and plasmid, respectively, to explore the effect of THBS4 on phenotype transformation, proliferation, apoptosis, and migration of PASMCs. The effect of THBS4 on pulmonary vascular remodeling was evaluated in vivo by adeno-associated virus which suppressed THBS4 expression. Circulating level of THBS4 in patients with PAH-CHD was measured by ELISA. RESULTS: THBS4 was upregulated in the lung tissues of MCT-AV rats, and was further upregulated in severe pulmonary vascular lesions. And THBS4 was expressed mainly in PASMCs. When THBS4 was inhibited, contractile markers α-SMA and MYH11 were upregulated, while the proliferative marker PCNA was decreased, the endothelial-mensenchymal transition marker N-cad was downregulated, proapototic marker BAX was increased. Additionally, proliferation and migration of PASMCs was inhibited and apoptosis was increased. Conversely, THBS4 overexpression resulted in opposite effects. And the impact of THBS4 on PASMCs was probably achieved through the regulation of the PI3K/AKT pathway. THBS4 suppression attenuated pulmonary vascular remodeling. Furthermore, compared with patients with simple congenital heart disease and mild PAH-CHD, the circulating level of THBS4 was higher in patients with severe PAH-CHD. CONCLUSIONS: THBS4 is a promising biomarker to distinguish reversible from irreversible PAH-CHD before repairing the shunt. THBS4 is a potential treatment target in PAH-CHD, especially in irreversible stage.


Asunto(s)
Cardiopatías Congénitas , Hipertensión Arterial Pulmonar , Ratas Sprague-Dawley , Trombospondinas , Animales , Humanos , Masculino , Ratas , Células Cultivadas , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/complicaciones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Trombospondinas/metabolismo , Trombospondinas/biosíntesis , Trombospondinas/genética
5.
BMC Cancer ; 24(1): 782, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951749

RESUMEN

BACKGROUND AND AIMS: The cardiotoxicity related to 5-Fluorouracil (5-FU) in cancer patients has garnered widespread attention. The systemic immune-inflammation index (SII) has recently been identified as a novel predictive marker for the development of cardiovascular illnesses in individuals without pre-existing health conditions. However, it remains unclear whether the levels of SII are linked to cardiotoxicity related to 5-FU. This retrospective study aims to fill this knowledge gap by examining the correlation between SII and cardiotoxicity related to 5-FU in a colorectal cancer cohort. METHODS: The study comprised colorectal cancer patients who received 5-FU-based chemotherapy at the affiliated cancer hospital of Guizhou Medical University between January 1, 2018 and December 31, 2020. After adjustment for confounders and stratification by tertiles of the interactive factor, linear regression analyses, curve fitting and threshold effect analyses were conducted. RESULTS: Of the 754 patients included final analysis, approximately 21% (n = 156) of them ultimately experienced cardiotoxicity related to 5-FU. Monocytes (M) was found as an influential element in the interaction between SII and cardiotoxicity related to 5-FU. In the low tertile of M (T1: M ≤ 0.38 × 109/L), increasing log SII was positively correlated with cardiotoxicity related to 5-FU (Odds Ratio [OR], 8.04; 95% confidence interval [95%CI], 1.68 to 38.56). However, a curvilinear relationship between log SII and cardiotoxicity was observed in the middle tertile of M (T2: 0.38 < M ≤ 0.52 × 109/L). An increase in log SII above 1.37 was shown to be associated with a decreased risk of cardiotoxicity (OR, 0.14; 95%CI, 0.02 to 0.88), indicating a threshold effect. In the high tertile of M (T3: M > 0.52 × 109/L), there was a tendency towards a negative linear correlation between the log SII and cardiotoxicity was observed (OR, 0.85; 95%CI, 0.37 to 1.98). CONCLUSION: Our findings suggest that SII may serve as a potential biomarker for predicting cardiotoxicity related to 5-FU in colorectal cancer patients. SII is an independent risk factor for cardiotoxicity related to 5-FU with low monocytes levels (T1). Conversely, in the middle monocytes levels (T2), SII is a protective factor for cardiotoxicity related to 5-FU but with a threshold effect.


Asunto(s)
Cardiotoxicidad , Neoplasias Colorrectales , Fluorouracilo , Humanos , Fluorouracilo/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Masculino , Femenino , Persona de Mediana Edad , Cardiotoxicidad/etiología , Estudios Retrospectivos , Anciano , Inflamación , Antimetabolitos Antineoplásicos/efectos adversos , Monocitos/inmunología , Monocitos/efectos de los fármacos , Adulto
6.
Theor Appl Genet ; 137(3): 69, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441650

RESUMEN

KEY MESSAGE: Twenty-eight QTLs for LLS disease resistance were identified using an amphidiploid constructed mapping population, a favorable 530-kb chromosome segment derived from wild species contributes to the LLS resistance. Late leaf spot (LLS) is one of the major foliar diseases of peanut, causing serious yield loss and affecting the quality of kernel and forage. Some wild Arachis species possess higher resistance to LLS as compared with cultivated peanut; however, ploidy level differences restrict utilization of wild species. In this study, a synthetic amphidiploid (Ipadur) of wild peanuts with high LLS resistance was used to cross with Tifrunner to construct TI population. In total, 200 recombinant inbred lines were collected for whole-genome resequencing. A high-density bin-based genetic linkage map was constructed, which includes 4,809 bin markers with an average inter-bin distance of 0.43 cM. The recombination across cultivated and wild species was unevenly distributed, providing a novel recombination landscape for cultivated-wild Arachis species. Using phenotyping data collected across three environments, 28 QTLs for LLS disease resistance were identified, explaining 4.35-20.42% of phenotypic variation. The major QTL located on chromosome 14, qLLS14.1, could be consistently detected in 2021 Jiyang and 2022 Henan with 20.42% and 12.12% PVE, respectively. A favorable 530-kb chromosome segment derived from Ipadur was identified in the region of qLLS14.1, in which 23 disease resistance proteins were located and six of them showed significant sequence variations between Tifrunner and Ipadur. Allelic variation analysis indicating the 530-kb segment of wild species might contribute to the disease resistance of LLS. These associate genomic regions and candidate resistance genes are of great significance for peanut breeding programs for bringing durable resistance through pyramiding such multiple LLS resistance loci into peanut cultivars.


Asunto(s)
Arachis , Resistencia a la Enfermedad , Arachis/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Cromosomas
7.
Mol Psychiatry ; 28(4): 1739-1746, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36759544

RESUMEN

Attention Deficit Hyperactivity Disorder (ADHD) medication is increasingly being used during pregnancy. Concerns have been raised as to whether ADHD medication has long-term adverse effects on the offspring. The authors investigated whether in utero exposure to ADHD medication was associated with adverse long-term neurodevelopmental and growth outcomes in offspring. The population-based cohort study in the Danish national registers included 1,068,073 liveborn singletons from 1998 to 2015 followed until any developmental diagnosis, death, emigration, or December 31, 2018. Children of mothers who continued ADHD medication (methylphenidate, amphetamine, dexamphetamine, lisdexamphetamine, modafinil, atomoxetine, clonidine) during pregnancy and children of mothers who discontinued ADHD medication before pregnancy were compared using Cox regression. Main outcomes were neurodevelopmental psychiatric disorders, impairments in vision or hearing, epilepsy, seizures, or growth impairment during childhood or adolescence. In total, 898 children were exposed to ADHD medication during pregnancy compared to 1270 children whose mothers discontinued ADHD medication before pregnancy. After adjustment for demographic and psychiatric characteristics of the mother, no increased risk of any offspring developmental disorders was found combined (aHR 0.97, 95% CI 0.81 to 1.17) or for separate subcategories. Similarly, no increased risk was found for any sub-categories of outcomes in the negative control or sibling controlled analyses. Neurodevelopment and growth in offspring do not differ based on antenatal exposure to ADHD medication. These findings provide reassurance for women with ADHD who depend on ADHD medication for daily functioning and who consider continuing medication in pregnancy.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Madres , Efectos Tardíos de la Exposición Prenatal , Adulto , Preescolar , Femenino , Humanos , Lactante , Embarazo , Anfetaminas/efectos adversos , Anfetaminas/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Clonidina/efectos adversos , Clonidina/uso terapéutico , Estudios de Cohortes , Dinamarca/epidemiología , Edad Gestacional , Metilfenidato/efectos adversos , Metilfenidato/uso terapéutico , Modafinilo/efectos adversos , Modafinilo/uso terapéutico , Madres/psicología , Trastornos del Neurodesarrollo/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Sistema de Registros
8.
J Org Chem ; 89(6): 3857-3867, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38386475

RESUMEN

In the present study, the environment-friendly visible-light-promoted strategy is used to perform an efficient, simple, and straightforward photocatalytic succinimide derivative synthesis from the reaction of 1,6-enynes and aryl sulfonyl bromide at room temperature under air ambient conditions. This method features mild conditions, broad substrate scope, high yields, and excellent configurational selectivity. In addition, all the atoms of the substrates involved in the reaction converge in the product structures, showing a high atomic economy. Moreover, the most important characteristic of this study is that no photocatalyst and additives are used, while the key factor that triggers the reaction is visible light, indicating that this study has an important practical value.

9.
Inorg Chem ; 63(3): 1607-1612, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38194295

RESUMEN

Solid base catalysts are widely used in the chemical industry owing to their advantages of environmental friendliness and easy separation. However, their application is limited by basic site aggregation and poor stability. In this study, we report the preparation of magnesium (Mg) single-atom catalysts with high activity and stability by a sublimation-trapping strategy. The Mg net was sublimated as Mg vapor at 620 °C, subsequently transported through argon, and finally trapped on the defects of nitrogen-doped carbon derived from metal-organic framework ZIF-8, producing Mg1/NC. Because of the atomically dispersed Mg sites, the obtained Mg1/NC exhibits high catalytic activity and stability for Knoevenagel condensation of benzaldehyde with malononitrile, which is a typical base-catalyzed reaction. The Mg1/NC catalyst achieves a high efficiency with a turnover frequency of 49.6 h-1, which is much better than that of the traditional counterpart MgO/NC (7.7 h-1). In particular, the activity of Mg1/NC shows no decrease after five catalytic cycles, while that of MgO/NC declines due to the instability of basic sites.

10.
Eur J Epidemiol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158818

RESUMEN

The HOPE cohort is a Danish nationwide cohort with ongoing follow-up, holding information on postpartum depression (PPD) symptoms and diagnoses on 170,218 childbirths (142,795 unique mothers). These data have been linked with extensive register data on health and socioeconomic information on the mothers, their partners, parents, and children. This cohort profile aimed to provide an overview of the data collection and content, describe characteristics, and evaluate potential selection bias. PPD screenings, using the Edinburgh Postnatal Depression Scale, were collected from 67 of the 98 Danish municipalities, covering the period January 2015 to December 2021. This data was linked with register data on PPD diagnoses (identified through medication prescriptions and hospital contacts) as well as background information. Cohort characteristics were compared to the source population, defined as all childbirths by women residing in Denmark during the same period (452,207 childbirths). Potential selection bias was evaluated by comparing odds ratios of five well-established associations between the cohort and the source population. The HOPE cohort holds information on 170,218 childbirths (38% of the source population) involving 142,795 unique mothers. The HOPE cohort only differed slightly from the source population on most characteristics examined, but larger differences were observed on specific characteristics with an underrepresentation of the youngest and oldest age groups, women with more than three children or twins/triplets, and women born outside Denmark. Similar associations were identified across the two populations within the five well-established associations. There was no indication of selection bias on the five examined associations, and the HOPE cohort is representative of the source population on important perinatal characteristics.

11.
Nephrology (Carlton) ; 29(7): 383-393, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38373789

RESUMEN

AIM: This study aimed to establish a prediction model in peritoneal dialysis patients to estimate the risk of technique failure and guide clinical practice. METHODS: Clinical and laboratory data of 424 adult peritoneal dialysis patients were retrospectively collected. The risk prediction models were built using univariate Cox regression, best subsets approach and LASSO Cox regression. Final nomogram was constructed based on the best model selected by the area under the curve. RESULTS: After comparing three models, the nomogram was built using the LASSO Cox regression model. This model included variables consisting of hypertension and peritonitis, serum creatinine, low-density lipoprotein, fibrinogen and thrombin time, and low red blood cell count, serum albumin, triglyceride and prothrombin activity. The predictive model constructed performed well using receiver operating characteristic curve and area under the curve value, C-index and calibration curve. CONCLUSION: This study developed and verified a new prediction instrument for the risk of technique failure among peritoneal dialysis patients.


Asunto(s)
Nomogramas , Diálisis Peritoneal , Humanos , Diálisis Peritoneal/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Medición de Riesgo/métodos , Insuficiencia del Tratamiento , Factores de Riesgo , Anciano , Adulto , Fallo Renal Crónico/terapia , Fallo Renal Crónico/sangre , Valor Predictivo de las Pruebas , Curva ROC
12.
PLoS Genet ; 17(11): e1009910, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780471

RESUMEN

Natural and artificial directional selections have resulted in significantly genetic and phenotypic differences across breeds in domestic animals. However, the molecular regulation of skeletal muscle diversity remains largely unknown. Here, we conducted transcriptome profiling of skeletal muscle across 27 time points, and performed whole-genome re-sequencing in Landrace (lean-type) and Tongcheng (obese-type) pigs. The transcription activity decreased with development, and the high-resolution transcriptome precisely captured the characterizations of skeletal muscle with distinct biological events in four developmental phases: Embryonic, Fetal, Neonatal, and Adult. A divergence in the developmental timing and asynchronous development between the two breeds was observed; Landrace showed a developmental lag and stronger abilities of myoblast proliferation and cell migration, whereas Tongcheng had higher ATP synthase activity in postnatal periods. The miR-24-3p driven network targeting insulin signaling pathway regulated glucose metabolism. Notably, integrated analysis suggested SATB2 and XLOC_036765 contributed to skeletal muscle diversity via regulating the myoblast migration and proliferation, respectively. Overall, our results provide insights into the molecular regulation of skeletal muscle development and diversity in mammals.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , MicroARNs/genética , Músculo Esquelético/crecimiento & desarrollo , ARN Largo no Codificante/genética , Porcinos/embriología , Transcriptoma/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Flujo Genético , Genoma/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , ARN Largo no Codificante/metabolismo , Porcinos/genética , Porcinos/metabolismo
13.
J Ren Nutr ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851308

RESUMEN

BACKGROUND: Excessive sugar intake increases the energy metabolic burden and the risk of cardiovascular disease (CVD). Patients on peritoneal dialysis absorb much more glucose than the World Health Organization recommends, but the link to CVD is unclear. OBJECTIVE: To identify the association between peritoneal glucose absorption, lipid metabolism, and CVD. METHODS: We applied generalized additive mixed effects and mixed effects Cox proportional hazard models to evaluate the impact of peritoneal glucose absorption on lipid profiles and CVD risk. We performed subgroup analyses by using protein intake (normalized protein nitrogen appearance [nPNA] and normalized protein catabolic rate [nPCR] were used to assess protein intake) and high-sensitivity C-reactive protein (hs-CRP). RESULTS: After multivariable adjustment, peritoneal glucose absorption per 10 g/d increase was associated with an increase in cholesterol of 0.145 (95% confidence interval [CI]: 0.086-0.204) mmol/L. No link with the total risk of CVD was observed; however, protein intake and hs-CRP levels affected the relationship between glucose absorption and CVD risk. Patients with values for nPNA and nPCR <1.0 g/(kg·d) were associated with a lower risk of CVD (hazard ratio [HR] 95% CI: 0.68 (0.46-0.98)) with glucose absorption per 10 g/d increase. While patients with hs-CRP levels ≥3 mg/d or values for nPNA or nPCR ≥1.0 g/(kg·d) were associated with a higher risk of CVD (HR 95% CI: 1.32 (1.07-1.63); 1.31 (1.02-1.68)) for glucose absorption per 10 g/d increase. CONCLUSIONS: Our study found a positive correlation between peritoneal glucose absorption and lipid profiles. Increased glucose absorption was associated with a lower risk of CVD in lower protein intake patients and a higher risk of CVD in higher hs-CRP or protein intake levels in patients on peritoneal dialysis.

14.
BMC Biol ; 21(1): 30, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782243

RESUMEN

BACKGROUND: Aging is known to exert an effect on liver regeneration, with the ability of liver to regenerate displaying a significant decline over time. Liver physiological parameters such as liver volume, blood flow, and metabolism, as well as the ability to regenerate after injury have all been shown to decrease at old age in humans and model systems, with a number of molecular mechanisms proposed to be involved, including DNA methylation-dependent genome remodeling. To address how changes in DNA methylation mediate the adverse aging effect on liver regeneration, we searched for differentially methylated genomic regions (DMRs) in mouse livers co-regulated by aging and regeneration and determined their associated genes and enriched pathways. RESULTS: DMRs were identified using whole-genome bisulfite sequencing (WGBS). Pathway analysis of aging DMR-mapped genes revealed two distinct phases of aging, 2-to-8 and 8-to-16 months old (m/o). Regenerative DMR-mapped differentially expressed genes (DEGs) were enriched in pathways controlling cell proliferation and differentiation. Most DMRs shared by both aging and regeneration changed in the same methylation direction between 2 and 8 m/o but in the opposite direction between 8 and 16 m/o. Regenerative DMRs inversely affected by aging during 8-to-16 m/o were found in the promoter/gene regions of 12 genes. Four regenerative DEGs were synchronously regulated by early aging and inversely regulated by mid-to-late aging DMRs. Lead DMR-mapped genes were validated by their expression profiles in liver aging and regeneration. CONCLUSIONS: Our study has uncovered new DMRs and gene targets inversely affected by liver aging and regeneration to explain the adverse aging effect on liver regeneration. These findings will be of fundamental importance to understand the epigenomic changes underlying the biology of aging on liver regeneration.


Asunto(s)
Epigénesis Genética , Epigenoma , Humanos , Animales , Ratones , Lactante , Regeneración Hepática/genética , Metilación de ADN , Envejecimiento/genética
15.
Ann Diagn Pathol ; 72: 152323, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38733674

RESUMEN

High risk features in colorectal adenomatous polyps include size >1 cm and advanced histology: high-grade dysplasia and villous architecture. We investigated whether the diagnostic rates of advanced histology in colorectal adenomatous polyps were similar among institutions across the United States, and if not, could differences be explained by patient age, polyp size, and/or CRC rate. Nine academic institutions contributed data from three pathologists who had signed out at least 100 colorectal adenomatous polyps each from 2018 to 2019 taken from patients undergoing screening colonoscopy. For each case, we recorded patient age and sex, polyp size and location, concurrent CRC, and presence or absence of HGD and villous features. A total of 2700 polyps from 1886 patients (mean age: 61 years) were collected. One hundred twenty-four (5 %) of the 2700 polyps had advanced histology, including 35 (1 %) with HGD and 101 (4 %) with villous features. The diagnostic rate of advanced histology varied by institution from 1.7 % to 9.3 % (median: 4.3 %, standard deviation [SD]: 2.5 %). The rate of HGD ranged from 0 % to 3.3 % (median: 1 %, SD: 1.2 %), while the rate of villous architecture varied from 1 % to 8 % (median: 3.7 %, SD: 2.5 %). In a multivariate analysis, the factor most strongly associated with advanced histology was polyp size >1 cm with an odds ratio (OR) of 31.82 (95 % confidence interval [CI]: 20.52-50.25, p < 0.05). Inter-institutional differences in the rate of polyps >1 cm likely explain some of the diagnostic variance, but pathologic subjectivity may be another contributing factor.


Asunto(s)
Pólipos Adenomatosos , Neoplasias Colorrectales , Humanos , Pólipos Adenomatosos/patología , Pólipos Adenomatosos/epidemiología , Pólipos Adenomatosos/diagnóstico , Persona de Mediana Edad , Masculino , Femenino , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/epidemiología , Anciano , Colonoscopía , Pólipos del Colon/patología , Pólipos del Colon/diagnóstico , Pólipos del Colon/epidemiología , Adulto , Estados Unidos/epidemiología , Factores de Riesgo
16.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892179

RESUMEN

IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.


Asunto(s)
Glioblastoma , IMP Deshidrogenasa , Telomerasa , Humanos , Telomerasa/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , IMP Deshidrogenasa/antagonistas & inhibidores , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Apoptosis/efectos de los fármacos
17.
J Sci Food Agric ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829244

RESUMEN

BACKGROUND: Bacterial fruit blotch (BFB), known as the 'cancer' of cucurbits, is a seed-borne disease of melons caused by Acidovorax citrulli. Traditional chemical treatments for BFB are ineffective and adversely affect the environment. Using dielectric barrier discharge (DBD) nanosecond-pulsed plasma technology, melon seeds were treated to promote germination and growth and to control BFB. RESULTS: Based on the evaluation parameters of seed germination, seedling growth, leaf yellowing and bacterial infection after seed plasma treatments, 9 min at 20 kV was selected as the optimal plasma discharge parameter. In this study, seedling growth was significantly improved after treating melon seeds carrying A. citrulli using this discharge parameter. The number of first true leaves measured on the eighth day was 2.3 times higher and the disease index was reduced by 60.5% compared to the control group. Attenuated total reflectance-Fourier transform infrared measurements show that plasma treatments penetrate the seed coat and denature polysaccharides and proteins in the seed kernel, affecting their growth and sterilization properties. CONCLUSION: Pre-sowing treatment of melon seeds carrying A. citrulli using nanosecond-pulsed plasma technology can effectively control seedling BFB disease and promote melon seedling growth by optimizing DBD parameters. © 2024 Society of Chemical Industry.

18.
BMC Genomics ; 24(1): 629, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865765

RESUMEN

BACKGROUND: Auxin is an important hormone in plants and the PIN-FORMED (PIN) genes are essential to auxin distribution in growth and developmental processes of plants. Peanut is an influential cash crop, but research into PIN genes in peanuts remains limited. RESULTS: In this study, 16 PIN genes were identified in the genome of cultivated peanut, resolving into four subfamilies. All PIN genes were predicted to be located in the plasma membrane and a subcellular location experiment confirmed this prediction for eight of them. The gene structure, cis-elements in the promoter, and evolutionary relationships were elucidated, facilitating our understanding of peanut PINs and their evolution. In addition, the expression patterns of these PINs in various tissues were analyzed according to a previously published transcriptome dataset and qRT-PCR, which gave us a clear understanding of the temporal and spatial expression of PIN genes in different growth stages and different tissues. The expression trend of homologous genes was similar. AhPIN2A and AhPIN2B exhibited predominant expression in roots. AhPIN1A-1 and AhPIN1B-1 displayed significant upregulation following peg penetration, suggesting a potential close association with peanut pod development. Furthermore, we presented the gene network and gene ontology enrichment of these PINs. Notably, AhABCB19 exhibited a co-expression relationship with AhPIN1A and AhPIN1B-1, with all three genes displaying higher expression levels in peanut pegs and pods. These findings reinforce their potential role in peanut pod development. CONCLUSIONS: This study details a comprehensive analysis of PIN genes in cultivated peanuts and lays the foundation for subsequent studies of peanut gene function and phenotype.


Asunto(s)
Arachis , Genoma de Planta , Arachis/metabolismo , Transcriptoma , Ácidos Indolacéticos/metabolismo
19.
Small ; 19(15): e2207291, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36604978

RESUMEN

Photoresponsive covalent organic frameworks (PCOFs) have emerged as attractive candidates for adsorption, but it is challenging to construct PCOF adsorbents due to structural order loss of covalent organic frameworks (COFs) after introducing photoresponsive motifs and/or tedious steps of postmodification. Here, a facile strategy is developed, by dispersing photoresponsive metal-organic polyhedra (PMOP) into COFs, to endow COFs with photoresponsive adsorption sites. As a proof-of-concept study, a COF with pore size of 4.5 nm and PMOP with suitable molecular size (4.0 and 3.1 nm for trans and cis configuration, respectively) are selected to meet the requirements of proper accommodation space, good guest dispersion, and free isomerization. The structure of COF is well preserved after introducing PMOPs. Interestingly, the obtained photoresponsive host-guest composite (PHGC) adsorbents exhibit photomodulated adsorption capacity on propylene (C3 H6 ) and the change in adsorption capacity can reach up to 43.3% and is stable during multiple cycles. Density functional theory calculations reveal that visible-light irradiation drives the azobenzene motifs in PHGCs to the trans configuration and the adsorption sites are fully open and interact with C3 H6 . UV-light irradiation makes the azobenzene motifs transform to the cis configuration, leading to the shield of the adsorption sites and the consequent release of C3 H6 .

20.
Small ; 19(40): e2302885, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37264726

RESUMEN

The adjustment of the valence state of metal ions is crucial for various applications because peculiar activity originates from metal ions with specific valence. Cu+ can interact with molecules possessing unsaturated bonds like CO via π-complexation, while Cu2+ doesn't have such ability. Meanwhile, Cu+ sites are easily oxidized to Cu2+ , leading to the loss of activity. Despite great efforts, the development of a facile method to construct and recover Cu+ sites remains a pronounced challenge. Here, for the first time a facile photo-induced strategy is reported to fabricate Cu+ sites in metal-organic frameworks (MOFs) and recover Cu+ after oxidation. The Cu2+ precursor was loaded on NH2 -MIL-125, a typical visible-light responsive Ti-based MOF. Visible light irradiation triggers the formation of Ti3+ from Ti4+ in framework, which reduces the supported Cu2+ in the absence of any additional reducing agent, thus simplifying the process for Cu+ generation significantly. Due to π-complexation interaction, the presence of Cu+ results in remarkably enhanced CO capture capacity (1.16 mmol g-1 ) compared to NH2 -MIL-125 (0.49 mmol g-1 ). More importantly, Cu+ can be recovered conveniently via re-irradiation when it is oxidized to Cu2+ , and the oxidation-recovery process is reversible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA