RESUMEN
Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for â¼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.
Asunto(s)
Proteínas Quinasas/metabolismo , Proteolisis , Proteoma/metabolismo , Adulto , Línea Celular , Bases de Datos de Proteínas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto JovenRESUMEN
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Asunto(s)
Aneuploidia , Cromosomas Humanos X , Células Clonales , Leucocitos , Mosaicismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Alelos , Enfermedades Autoinmunes/genética , Bancos de Muestras Biológicas , Segregación Cromosómica/genética , Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Células Clonales/patología , Exoma/genética , Proteínas F-Box/genética , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal , Leucemia/genética , Leucocitos/metabolismo , Modelos Genéticos , Herencia Multifactorial/genética , Mutación Missense/genéticaRESUMEN
Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.
Asunto(s)
Akkermansia , Homeostasis , Inmunidad , Fosfatidiletanolaminas , Akkermansia/química , Akkermansia/citología , Akkermansia/inmunología , Membrana Celular/química , Membrana Celular/inmunología , Citocinas/inmunología , Homeostasis/inmunología , Humanos , Mediadores de Inflamación/síntesis química , Mediadores de Inflamación/química , Mediadores de Inflamación/inmunología , Fosfatidiletanolaminas/síntesis química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/inmunología , Relación Estructura-Actividad , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/inmunologíaRESUMEN
Mosaic chromosomal alterations (mCAs) are classified as mosaic deletions (loss), copy-neutral loss of heterozygosity (CN-LOH), and duplications (gain), attracting special attention as biological aging-related acquired genetic alterations. While these mCAs have been linked with aging and various diseases, no study has investigated their association with suicide risk which is associated with abnormal biological aging. Here, we examined the association between suicide deaths and mCAs, including mosaic loss of the X (mLOX) and Y chromosomes, by leveraging blood-derived single nucleotide polymorphism-array data. The first (410 suicide decedents and 88,870 controls) and the second (363 suicide decedents and 88,870 controls) cohorts were analyzed and integrated using meta-analyses (773 suicide decedents and 177,740 controls). Total mCAs in autosomal chromosomes were significantly increased in suicide (p = 1.28 × 10-6, odds ratio [OR] = 1.78), mostly driven by loss (p = 4.05 × 10-9, OR = 2.70) and gain (p = 1.08 × 10-3, OR = 2.23). mLOX were significantly increased in female suicide (p = 2.66 × 10-21, OR = 4.00). The directions of effects of all mCAs in autosomal and sex chromosomes on suicide were the same in the first and second sets. Subgroup analyses suggest that our findings were mostly driven by suicide itself, and not confounded by comorbid psychiatric disorders or physical diseases, smoking status, sample location, or postmortem sample status. In conclusion, we provide the first evidence for aberrant mCAs in somatic autosomal and X chromosomes in suicide, which may contribute to an improved understanding of the genomic pathophysiology underlying suicide.
RESUMEN
Natural selection signatures across Japanese subpopulations are under-explored. Here we conducted genome-wide selection scans with 622,926 single nucleotide polymorphisms for 20,366 Japanese individuals, who were recruited from the main-islands of Japanese Archipelago (Hondo) and the Ryukyu Archipelago (Ryukyu), representing two major Japanese subpopulations. The integrated haplotype score (iHS) analysis identified several signals in one or both subpopulations. We found a novel candidate locus at IKZF2, especially in Ryukyu. Significant signals were observed in the major histocompatibility complex region in both subpopulations. The lead variants differed and demonstrated substantial allele frequency differences between Hondo and Ryukyu. The lead variant in Hondo tags HLA-A*33:03-C*14:03-B*44:03-DRB1*13:02-DQB1*06:04-DPB1*04:01, a haplotype specific to Japanese and Korean. While in Ryukyu, the lead variant tags DRB1*15:01-DQB1*06:02, which had been recognized as a genetic risk factor for narcolepsy. In contrast, it is reported to confer protective effects against type 1 diabetes and human T lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. The FastSMC analysis identified 8 loci potentially affected by selection within the past 20-150 generations, including 2 novel candidate loci. The analysis also showed differences in selection patterns of ALDH2 between Hondo and Ryukyu, a gene recognized to be specifically targeted by selection in East Asian. In summary, our study provided insights into the selection signatures within the Japanese and nominated potential sources of selection pressure.
Asunto(s)
Pueblos del Este de Asia , Selección Genética , Humanos , Aldehído Deshidrogenasa Mitocondrial/genética , Alelos , Pueblo Asiatico/genética , Frecuencia de los Genes , Haplotipos , Polimorfismo de Nucleótido Simple , Selección Genética/genética , JapónRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.
Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterasa , Niño , Humanos , Enzimas Desubicuitinizantes , Herpesvirus Humano 8/fisiología , Infecciones por VIH/complicaciones , Linfoma de Efusión Primaria , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Sarcoma de Kaposi/virología , Ubiquitina Tiolesterasa/genética , Proteínas Virales/genéticaRESUMEN
PURPOSE: This study aimed to quantify T 2 * $$ {T}_2^{\ast } $$ for hyperpolarized [1-13 C]pyruvate and metabolites in the healthy human brain and renal cell carcinoma (RCC) patients at 3 T. METHODS: Dynamic T 2 * $$ {T}_2^{\ast } $$ values were measured with a metabolite-specific multi-echo spiral sequence. The dynamic T 2 * $$ {T}_2^{\ast } $$ of [1-13 C]pyruvate, [1-13 C]lactate, and 13 C-bicarbonate was estimated in regions of interest in the whole brain, sinus vein, gray matter, and white matter in healthy volunteers, as well as in kidney tumors and the contralateral healthy kidneys in a separate group of RCC patients. T 2 * $$ {T}_2^{\ast } $$ was fit using a mono-exponential function; and metabolism was quantified using pyruvate-to-lactate conversion rate maps and lactate-to-pyruvate ratio maps, which were compared with and without an estimated T 2 * $$ {T}_2^{\ast } $$ correction. RESULTS: The T 2 * $$ {T}_2^{\ast } $$ of pyruvate was shown to vary during the acquisition, whereas the T 2 * $$ {T}_2^{\ast } $$ of lactate and bicarbonate were relatively constant through time and across the organs studied. The T 2 * $$ {T}_2^{\ast } $$ of lactate was similar in gray matter (29.75 ± 1.04 ms), white matter (32.89 ± 0.9 ms), healthy kidney (34.61 ± 4.07 ms), and kidney tumor (33.01 ± 2.31 ms); and the T 2 * $$ {T}_2^{\ast } $$ of bicarbonate was different between whole-brain (108.17 ± 14.05 ms) and healthy kidney (58.45 ± 6.63 ms). The T 2 * $$ {T}_2^{\ast } $$ of pyruvate had similar trends in both brain and RCC studies, reducing from 75.56 ± 2.23 ms to 22.24 ± 1.24 ms in the brain and reducing from 122.72 ± 9.86 ms to 57.38 ± 7.65 ms in the kidneys. CONCLUSION: Multi-echo dynamic imaging can quantify T 2 * $$ {T}_2^{\ast } $$ and metabolism in a single integrated acquisition. Clear differences were observed in the T 2 * $$ {T}_2^{\ast } $$ of metabolites and in their behavior throughout the timecourse.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Ácido Pirúvico/metabolismo , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Bicarbonatos/metabolismo , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Riñón/diagnóstico por imagen , Riñón/metabolismo , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Lactatos/metabolismo , Isótopos de Carbono/metabolismoRESUMEN
PURPOSE: This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY: The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS: The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS: Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION: 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.
Asunto(s)
Encéfalo , Imagenología Tridimensional , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Adulto , Masculino , Femenino , Algoritmos , Persona de Mediana Edad , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos , Voluntarios Sanos , Simulación por ComputadorRESUMEN
PURPOSE: Metabolite-specific balanced SSFP (MS-bSSFP) sequences are increasingly used in hyperpolarized [1-13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and rate constant maps do not account for differences in the signal evolution of MS-bSSFP acquisitions. METHODS: In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate constants for these experiments. The model was validated in vivo using paired animal (healthy rat kidneys n = 8, transgenic adenocarcinoma of the mouse prostate n = 3) and human renal cell carcinoma (n = 3) datasets. Gradient echo (GRE) acquisitions were used with a previous GRE model to compare to the results of the proposed GRE-bSSFP model. RESULTS: Within simulations, the proposed GRE-bSSFP model fits the simulated data well, whereas a GRE model shows bias because of model mismatch. For the in vivo datasets, the estimated conversion rate constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. CONCLUSION: The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other applications, for example, estimating rate constants with other hyperpolarized reagents or multi-echo bSSFP.
Asunto(s)
Isótopos de Carbono , Imagen por Resonancia Magnética , Ácido Pirúvico , Animales , Ácido Pirúvico/farmacocinética , Ácido Pirúvico/metabolismo , Ratas , Imagen por Resonancia Magnética/métodos , Ratones , Isótopos de Carbono/farmacocinética , Humanos , Masculino , Riñón/diagnóstico por imagen , Riñón/metabolismo , Simulación por Computador , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Relación Señal-Ruido , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/metabolismo , Ratones TransgénicosRESUMEN
BACKGROUND: Kidney transplant is the treatment of choice for patients with end-stage renal disease. Early detection of allograft injury is important to delay or prevent irreversible damage. PURPOSE: To investigate the feasibility of hyperpolarized (HP) [1-13C]pyruvate MRI for assessing kidney allograft metabolism. STUDY TYPE: Prospective. SUBJECTS: Six participants (mean age, 45.2 ± 12.4 years, two females) scheduled for kidney allograft biopsy and five patients (mean age, 59.6 ± 10.4 years, two females) with renal cell carcinoma (RCC). FIELD STRENGTH/SEQUENCE: Three Tesla, T2-weighted fast spin echo, multi-echo gradient echo, single shot diffusion-weighted echo-planar imaging, and time-resolved HP 13C metabolite-selective imaging. ASSESSMENT: Five of the six kidney allograft participants underwent biopsy after MRI. Estimated glomerular filtration rate (eGFR) and urine protein-to-creatine ratio (uPCR) were collected within 4 weeks of MRI. Kidney metabolism was quantified from HP [1-13C]pyruvate MRI using the lactate-to-pyruvate ratio in allograft kidneys and non-tumor bearing kidneys from RCC patients. STATISTICAL TESTS: Descriptive statistics (mean ± SD). RESULTS: Biopsy was performed a mean of 9 days (range 5-19 days) after HP [1-13C]pyruvate MRI. Three biopsies were normal, one showed low-grade fibrosis and one showed moderate microvascular inflammation. All had stable functioning allografts with eGFR >60 mL/min/1.73 m2 and normal uPCR. One participant who did not undergo biopsy had reduced eGFR of 49 mL/min/1.73 m2 and elevated uPCR. The mean lactate-to-pyruvate ratio was 0.373 in participants with normal findings (N = 3) and 0.552 in participants with abnormal findings (N = 2). The lactate-to-pyruvate ratio was highest (0.847) in the participant with reduced eGFR and elevated uPRC. Native non-tumor bearing kidneys had a mean lactate-to-pyruvate ratio of 0.309. DATA CONCLUSION: Stable allografts with normal findings at biopsy showed lactate-to-pyruvate ratios similar to native non-tumor bearing kidneys, whereas allografts with abnormal findings showed higher lactate-to-pyruvate ratios. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.
RESUMEN
In this work we develop a new scheme to construct a diabatic potential energy matrix (DPEM). We propose a diabatization method which is based on integrating the diabatic potential gradient difference to diabatize adiabatic ab initio energies. This method is capable of performing high-precision adiabatic-to-diabatic transformations, with a unique advantage in effectively handling the significant fluctuations in derivative-couplings caused by conical intersection (CI) seams. The above scheme is applied to the DPEM construction of the Na(3p) + H2 â NaH + H reaction. The fitting data including adiabatic energies, energy gradients and derivative-couplings obtained from a previous benchmark DPEM are diabatized and fitted using a general neural network fitting procedure to generate the DPEM. The produced DPEM can effectively describe nonadiabatic processes involving different electronic states. We further perform quantum dynamical calculations on the new DPEM and the previous benchmark DPEM, and the obtained results demonstrate the effectiveness of our scheme.
RESUMEN
BACKGROUND: Vascular transplantation is an effective treatment for severe vascular lesions. The design of the bioactive and mechanical properties of small-caliber vascular grafts is critical for their application in tissue engineering. In this study, we sought to develope a small-caliber vascular graft by electrospinning a mixture of a human acellular amniotic membrane (HAAM) and polycaprolactone (PCL). RESULTS: Mechanical tests showed that the vascular grafts were strong enough to endure stress from adjacent blood vessels and blood pressure. The biocompatibility of the HAAM/PCL vascular grafts was evaluated based on cell proliferation in vitro. The tubular formation test demonstrated that vascular grafts containing HAAM could improve human umbilical vein endothelial cell function, and in vivo implantation was performed by replacing the rat abdominal aorta. The HAAM/PCL vascular graft was found to promote attachment and endothelial cell retention. The regenerated smooth muscle layer was similar to native arteries' smooth muscle layer and the endothelium coverage was complete. CONCLUSIONS: These results suggest that our constructs may be promising vascular graft candidates and can potentially be used to develop vascular grafts that can endothelialize rapidly in vivo.
Asunto(s)
Amnios , Prótesis Vascular , Células Endoteliales de la Vena Umbilical Humana , Poliésteres , Remodelación Vascular , Poliésteres/química , Humanos , Animales , Ratas , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Ingeniería de Tejidos , Fenómenos Mecánicos , Andamios del Tejido/química , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacologíaRESUMEN
Harmine (HM), a ß-carboline alkaloid extracted from plants, is a crucial component of traditional Chinese medicine (TCM) known for its diverse pharmacological activities. Thrombocytopenia, a common and challenging hematological disorder, often coexists with serious illnesses. Previous research has shown a correlation between HM and thrombocytopenia, but the mechanism needs further elucidation. The aim of this study was to clarify the mechanisms underlying the effects of HM on thrombocytopenia and to develop new therapeutic strategies. Flow cytometry, Giemsa staining, and Phalloidin staining were used to assess HM's impact on Meg-01 and HEL cell differentiation and maturation in vitro. A radiation-induced thrombocytopenic mouse model was employed to evaluate HM's effect on platelet production in vivo. Network pharmacology, molecular docking, and protein blotting were utilized to investigate HM's targets and mechanisms. The results demonstrated that HM dose-dependently promoted Meg-01 and HEL cell differentiation and maturation in vitro and restored platelet levels in irradiated mice in vivo. Subsequently, HM was found to be involved in the biological process of platelet production by upregulating the expressions of Rac1, Cdc42, JNK, and 5-HTR2A. Furthermore, the targeting of HM to 5-HTR2A and its correlation with downstream Rac1/Cdc42/JNK were also confirmed. In conclusion, HM regulates megakaryocyte differentiation and thrombopoiesis through the 5-HTR2A and Rac1/Cdc42/JNK pathways, providing a potential treatment strategy for thrombocytopenia.
RESUMEN
To explore the genetic architecture underlying exercise-induced fat mass change, we performed a genome-wide association study with a Chinese cohort consisting of 442 physically inactive healthy adults in response to a 12-week exercise training (High-intensity Interval Training or Resistance Training). The inter-individual response showed an exercise-induced fat mass change and ten novel lead SNPs were associated with the response on the level of P<1×10-5. Four of them (rs7187742, rs1467243, rs28629770 and rs10848501) showed a consistent effect direction in the European ancestry. The Polygenic Predictor Score (PPS) derived from ten lead SNPs, sex, baseline body mass and exercise protocols explained 40.3% of the variance in fat mass response, meanwhile importantly the PPS had the greatest contribution. Of note, the subjects whose PPS was lower than -9.301 had the highest response in exercise-induced fat loss. Finally, we highlight a series of pathways and biological processes regarding the fat mass response to exercise, e.g. apelin signaling pathway, insulin secretion pathway and fat cell differentiation biological process.
RESUMEN
Danon disease is a rare X-linked disorder caused by deficiency of the lysosome-associated membrane protein-2. We report a case of hypertrophic obstructive cardiomyopathy secondary to a novel mutation in the lysosome-associated membrane protein-2 gene in a 10-year-old male adolescent. We performed a modified extended Morrow procedure to minimise the risk of death and improve the patient's quality of life. The patient did not have exertional dyspnoea, and auscultation did not reveal a cardiac murmur at 1-year follow-up.
Asunto(s)
Cardiomiopatía Hipertrófica , Enfermedad por Depósito de Glucógeno de Tipo IIb , Masculino , Adolescente , Humanos , Niño , Enfermedad por Depósito de Glucógeno de Tipo IIb/complicaciones , Enfermedad por Depósito de Glucógeno de Tipo IIb/diagnóstico , Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Calidad de Vida , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genéticaRESUMEN
The chiral nature of active matter plays an important role in the dynamics of active matter interacting with chiral structures. Skyrmions are chiral objects, and their interactions with chiral nanostructures can lead to intriguing phenomena. Here, we explore the random-walk dynamics of a thermally activated chiral skyrmion interacting with a chiral flower-like obstacle in a ferromagnetic layer, which could create topology-dependent outcomes. It is a spontaneous mesoscopic order-from-disorder phenomenon driven by the thermal fluctuations and topological nature of skyrmions that exists only in ferromagnetic and ferrimagnetic systems. The interactions between the skyrmions and chiral flowers at finite temperatures can be utilized to control the skyrmion position and distribution without applying any external driving force or temperature gradient. The phenomenon that thermally activated skyrmions are dynamically coupled to chiral flowers may provide a new way to design topological sorting devices.
RESUMEN
Maternal anaemia is a major public health problem. Developing maternal anaemia prevention and control policies is an important prerequisite for carrying out evidence-based interventions. This article reviews maternal anaemia prevention and control policies in China, identifies gaps, and provides references for other countries. We examined policies concerning maternal nutrition and other related literature in China, identified through key databases and government websites, and conducted a narrative review of the relevant documentations guided by the Smith Policy-Implementing-Process framework. A total of 65 articles and documents were identified for analysis. We found that Chinese government has committed to reducing maternal anaemia at the policy level, with established objectives and a clear time frame. However, most of policies were not accompanied by operational guidelines, standardized interventions, and vigorous monitoring and evaluation mechanisms, and 85% of the policies don't have quantifiable objectives on anaemia. Maternal anaemia prevention and control services offered in clinical settings were primarily nutrition education and anaemia screening. Population-based interventions such as iron fortification have yet to be scaled up. Furthermore, medical insurance schemes in some regions do not cover anaemia prevention and treatment, and in other regions that offer coverage, the reimbursement rate is low. The number and capacity of health professionals is also limited. Policy changes should focus on the integration of evidence-based interventions into routine antenatal care services and public health service packages, standardization of dosages and provision of iron supplementation, streamline of reimbursement for outpatient expenses, and capacity building of health professionals.
Asunto(s)
Anemia , Política de Salud , Humanos , Femenino , China , Embarazo , Anemia/prevención & control , Política de Salud/legislación & jurisprudencia , Atención Prenatal , Fenómenos Fisiologicos Nutricionales Maternos , Política Nutricional/legislación & jurisprudencia , Anemia Ferropénica/prevención & control , Complicaciones Hematológicas del Embarazo/prevención & controlRESUMEN
BACKGROUND: Nacubactam, a new ß-lactamase inhibitor with antibacterial activity, is being developed as a single drug to be co-administered with cefepime or aztreonam. However, determining pharmacokinetics/pharmacodynamics (PK/PD) parameters in ß-lactam/ß-lactamase inhibitor combinations remains challenging. We aimed to establish a practical PK/PD analysis method for aztreonam/nacubactam that incorporates instantaneous MIC (MICi). METHODS: Based on chequerboard MIC measurements, MICi of aztreonam against carbapenemase-producing Klebsiella pneumoniae in the presence of nacubactam was simulated. RESULTS: The mean change in the bacterial count of thigh-infected mice in an in vivo PD study was plotted based on %fT>MICi and analysed using the inhibitory effect sigmoid Imax model. fT>MICi calculated from the PK experiments showed a high correlation with the in vivo bactericidal effect, suggesting that fT>MICi is the optimal PK/PD parameter for aztreonam/nacubactam. The target values of fT>MICi achieving growth inhibition, 1 log10 kill and 2 log10 kill, were 22, 38% and 75%, respectively. CONCLUSIONS: The PK/PD analysis method proposed in this study is promising for determining practical PK/PD parameters in combination therapy. In addition, this is the first report of aztreonam/nacubactam showing a potent in vivo therapeutic effect against NDM-producing K. pneumoniae.
Asunto(s)
Aztreonam , Inhibidores de beta-Lactamasas , Animales , Ratones , Aztreonam/farmacología , Inhibidores de beta-Lactamasas/farmacología , Klebsiella pneumoniae , Antibacterianos/farmacología , beta-Lactamasas/farmacología , Compuestos de Azabiciclo/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
We propose a skyrmion-based universal quantum computer. Skyrmions have the helicity degree of freedom in frustrated magnets, where twofold degenerated Bloch-type skyrmions are energetically favored by the magnetic dipole-dipole interaction. We construct a qubit based on them. A skyrmion must become a quantum-mechanical object when its size is of the order of nanometers. It is shown that the universal quantum computation is possible based on nanoscale skyrmions in a magnetic bilayer system. The one-qubit quantum gates are materialized by controlling the electric field and the spin current. The two-qubit gate is materialized with the use of the Ising-type exchange coupling. The merit of the present mechanism is that external magnetic field is not necessary. Our results may open a possible way toward universal quantum computation based on nanoscale topological spin textures.
RESUMEN
PURPOSE: Nacubactam (NAC) is a novel diazabicyclooctane ß-lactamase inhibitor used in combination with cefepime (CFPM). In this study, we aimed to determine the target pharmacokinetics (PK) and pharmacodynamics (PD) values of CFPM/NAC in mice infected with ß-lactamase-producing Enterobacterales, such as the carbapenemase-producing Enterobacterales. METHODS: Three strains of ß-lactamase-producing Enterobacterales, Klebsiella pneumoniae MSC 21444, Escherichia coli MSC 20662, and K. pneumoniae ATCC BAA-1898, were used for checkerboard assays and fractionation studies and dose-range studies. A PK study was performed in neutropenic mice. Additionally, PK/PD analysis was performed based on the instantaneous minimum inhibitory concentration (MICi) concept. RESULTS: Checkerboard measurements revealed that higher NAC concentrations decreased the CFPM MIC in a concentration-dependent manner. In all tested strains, fT > MICi calculated from the PK experiments showed a high correlation with the mean change in the bacterial count of thigh-infected mice in the in vivo PD study, suggesting that fT > MICi is an optimal PK/PD parameter for monitoring the CFPM/NAC combination. The target fT > MICi values for CFPM/NAC to achieve a bacteriostatic effect, 1-log10-kill, and 2-log10-kill values were 30, 49, and 94%, respectively. CONCLUSIONS: Our results indicate that fT > MICi is a PK/PD parameter is suitable for monitoring the CFPM/NAC combination. The minimum target value for achieving a static effect against ß-lactamase-producing Enterobacterales is 30%.