Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Langmuir ; 39(9): 3391-3399, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36821086

RESUMEN

Ultrafine explosives show high safety and reliable initiation and have been widely used in aerospace, military, and industrial systems. The outstanding performance of ultrafine explosives is largely given by the unique void defects according to the simulation results. However, the structures and effects of internal nano-voids in ultrafine explosive particles have been rarely investigated experimentally. In this work, contrast-variation small angle X-ray scattering was verified to reliably measure the structures of internal nano-voids in ultrafine explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and 2,2',4,4',6,6'-hexanitro diphenylethylene (HNS). The size of nano-voids is around 10 nm, and the estimated number of nano-voids in a single particle is considerable. Moreover, the thermal stability of ultrafine LLM-105 was improved via changing the structures of nano-voids. This work provides a methodology for the study of nano-void defects in ultrafine organic particles and may pave the path to enhance the performance of ultrafine explosives via defect engineering.

2.
Small ; 15(20): e1900338, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30942953

RESUMEN

Light-ignited combustions have been proposed for a variety of industrial and scientific applications. They suffer, however, from ultrahigh light ignition thresholds and poor self-propagating combustion of typical high-energy density materials, e.g., 2,4,6,8,10,12-(hexanitrohexaaza)cyclododecane (CL-20). Here, reported is that both light ignition and combustion performance of CL-20 are greatly enhanced by embedding ε-CL-20 particles in a graphene oxide (GO) matrix. The GO matrix yields a drastic temperature rise that is sufficient to trigger the combustion of GO/CL-20 under low laser irradiation (35.6 mJ) with only 6 wt% of GO. The domino-like reduction-combustion of the GO matrix can serve as a relay and deliver the decomposition-combustion of CL-20 to its neighbor sites, forming a relay-domino-like reaction. In particular, a synergistic reaction between GO and CL-20 occurrs, facilitating more energy release of the GO/CL-20 composite. The novel relay-domino-like reaction coupled with the synergistic reaction of CL-20 and GO results in a deflagration of the material, which generates a high-temperature pulse (HTP) that can be guided to produce advanced functional materials. As a proof of concept, a bi-layered photothermal membrane is prepared by HTP treatment in an extremely simple and fast way, which can serve as a model architecture for efficient interfacial water evaporation.

3.
Chemistry ; 24(17): 4390-4398, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29230886

RESUMEN

A facile calcination method is developed for the in situ synthesis of nanohybrids of Ti3+ self-doped TiO2 /graphene quantum dot nanosheets (Ti3+ -TiO2 /GQD NSs). Ti3+ sites are formed on the surface of the TiO2 nanosheets through carbothermal reduction by GQDs, using citric acid as a carbon source. Such heterojunctions exhibit enhanced visible-light absorption properties, large photocurrent current densities, and low recombination of photoinduced carriers. The methylene blue (MB) and rhodamine B (RhB) photodegradation result demonstrates a higher visible-light photocatalysis performance than that of the original TiO2 . On one hand, inducing Ti3+ sites is efficient for the separation of photogenerated charge carriers and for reducing electron-hole pair recombination. On the other hand, GQDs are beneficial for generating more photocurrent carriers and facilitating the charge transfer across the TiO2 surface. It is proposed that Ti3+ sites and GQDs induced in TiO2 nanosheets have a synergistic effect, leading to excellent photocatalysis properties. Finally, a theoretical calculation is provided of the carbothermal reduction for the formation mechanism of the Ti3+ defect sites.

4.
Chemistry ; 22(1): 272-8, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26593633

RESUMEN

A single-layered intermolecular carbonization method was applied to synthesize single-layered nitrogen-doped graphene quantum dots (N-GQDs) by using 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as the only precursor. In this method, the gas produced in the pyrolysis of TATB assists with speeding up of the reactions and expanding the layered distance, so that it facilitates the formation of single-layered N-GQDs (about 80 %). The symmetric intermolecular carbonizations of TATB arrayed in a plane and six nitrogen-containing groups ensure small, uniform sizes (2-5 nm) of the resulting products, and provide high nitrogen-doping concentrations (N/C atomic ratio ca. 10.6 %). In addition to release of the produced gas, TATB is almost completely converted into aggregated N-GQDs; thus, relatively higher production rates are possible with this approach. Investigations show that the as-produced N-GQDs have superior fluorescent characteristics; high water solubility, biocompatibility, and low toxicity; and are ready for potential applications, such as biomedical imaging and optoelectronic devices.

5.
Phys Chem Chem Phys ; 17(12): 8078-86, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25728386

RESUMEN

Hollow hierarchical microspheres of Bi/BiOBr (SBB) with oxygen vacancies were prepared using a one step solvothermal method. It was found that the stannous chloride dihydrate played key roles in the formation of Bi, defects and the stacking mode of hierarchical construction units. Positron annihilation lifetime spectroscopy (PALS) was used to demonstrate the oxygen vacancies in Bi/BiOBr samples. The density of states (DOS) of the valence band of BiOBr can be modulated by the introduction of oxygen vacancies according to the valence band XPS and Density Functional Theory (DFT) calculations. Analyses of photoluminescence and BET demonstrated that SBB hollow hierarchical microspheres with higher specific surface area have a lower recombination rate of photo-generated electrons and holes. The photocatalytic and adsorptive performances showed that the samples exhibited stronger adsorption capacity toward rhodamine B (RhB) and highly efficient photocatalytic activity in the degradation of RhB, which were attributed to the higher adsorption ability and synergistic effect of oxygen vacancies and construction of the heterojunction structure (Bi/BiOBr).

6.
Materials (Basel) ; 15(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234175

RESUMEN

The atomic scale local structures affect the initiation performance of ultra-fine explosives according to the stimulation results of hot spot formation. However, the experimental characterization of local structures in ultra-fine explosives has been rarely reported, due to the difficulty in application of characterization methods having both high resolution in and small damage to unstable organic explosive materials. In this work, X-ray total scattering was explored to investigate the atomic scale local distortion of two widely applicable ultra-fine explosives, LLM-105 and HNS. The experimental spectra of atomic pair distribution function (PDF) derived from scattering results were fitted by assuming rigid ring structures in molecules. The effects of grain refinement and thermal aging on the atomic scale local structure were investigated, and the changes in both the length of covalent bonds have been identified. Results indicate that by decreasing the particle size of LLM-105 and HNS from hundreds of microns to hundreds of nanometers, the crystal structures remain, whereas the molecular configuration slightly changes and the degree of structural disorder increases. For example, the average length of covalent bonds in LLM-105 reduces from 1.25 Å to 1.15 Å, whereas that in HNS increases from 1.25 Å to 1.30 Å, which is possibly related to the incomplete crystallization process and internal stress. After thermal aging of ultra-fine LLM-105 and HNS, the degree of structural disorder decreases, and the distortion in molecules formed in the synthesis process gradually healed. The average length of covalent bonds in LLM-105 increases from 1.15 Å to 1.27 Å, whereas that in HNS reduces from 1.30 Å to 1.20 Å. The possible reason is that the atomic vibration in the molecule intensifies during the heat aging treatment, and the internal stress was released through changes in molecular configuration, and thus the atomic scale distortion gradually heals. The characterization method and findings in local structures obtained in this work may pave the path to deeply understand the relationship between the defects and performance of ultra-fine explosives.

7.
J Environ Sci (China) ; 23(2): 177-82, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21516989

RESUMEN

Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.


Asunto(s)
Carbono/química , Disruptores Endocrinos/aislamiento & purificación , Fenoles/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Compuestos de Bencidrilo , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Transmisión , Difracción de Rayos X
8.
ACS Appl Mater Interfaces ; 13(15): 17649-17657, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33821610

RESUMEN

Interfacial solar evaporation (ISE) is an environmentally friendly and promising water treatment strategy. However, the bactericidal performance of an ISE system during the evaporation process is usually ignored, which may result in potential water safety hazards. In this study, a facile method is presented for the controllable synthesis of Ag quantum dots (QDs)/rGO to simultaneously achieve efficient solar evaporation and evaporated water disinfection. The size of the Ag nanoparticles (NPs) rather than the loading amount is the factor that considerably affects the solar evaporation efficiency and the bactericidal performance. Under 1 sun of irradiation (1 kW·m2), the evaporation rate and solar evaporation efficiency of Ag QDs/rGO are as high as 2.11 kg·m2·h-1 and 94.0%, respectively. Based on E. coli and S. aureus, the bactericidal activity of Ag QDs/rGO in the evaporation process is qualitatively and quantitatively characterized; no bacteria could be detected in the evaporated water. Furthermore, various water samples, including acidic water, alkaline water, dye water, and seawater, are selected to verify the solar evaporation performance of Ag QDs/rGO. When considering complex water samples, the as-prepared material maintains a high evaporation efficiency and an excellent purification effect, indicating attractive potential for various practical applications.

9.
ACS Appl Mater Interfaces ; 12(31): 35193-35200, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32602699

RESUMEN

Solar water evaporation is a promising and environment-friendly approach to relieve global water scarcity issues. Currently, many reports show that the voids and porous structure are beneficial to the absorption of solar energy to generate water steam. Herein, carbon nanospheres with central cavity structures are rationally designed by the one-step NaN3/fluorinated graphite deflagration method. The Na clusters derived from NaN3 deflagration are not only provided as the hollow templates but also react with fluorinated graphite to release heat, further boosting the formation of hollow carbon nanospheres (HCSs). Benefiting from the diversity of carbon nanomaterials, rough surface, unique hollow structures, and numerous micron/submicron holes, the light absorption ability, heat localization, and water supply capacity of HCSs have been significantly enhanced. Because of these advantages, the HCS-3 exhibits an excellent water evaporation efficiency of 92.7% at 1 kW m-2, which is much higher than that of carbon nanospheres, graphene oxide, and even most of the previous carbon materials. In addition, we demonstrated that the HCSs have a long-term stability and high efficiency of production of drinkable water and purifying various types of wastewater, including seawater, strong acid/alkaline water, and water containing dyes. To sum up, the deflagration synthetic technology as a facile and ultrafast process can be a new insight for future photothermal material design.

10.
J Colloid Interface Sci ; 579: 637-644, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32650195

RESUMEN

Iron-nitrogen (Fe-N) co-doped carbon nanomaterials are promising catalysts for oxygen reduction reaction (ORR) with outstanding catalytic activity at low cost. Here, we demonstrate a facile bottom-up strategy to fabricate Fe, N, B co-doped bamboo-like carbon nanotubes using ionic liquid as dopant source. We show that the synergistic effect of Fe, N, B in the mesoporous carbon structure can derive excellent ORR activity, for which the FeNB/C-800 catalyst delivers an onset potential of 0.97 V (vs. reversible hydrogen electrode, RHE), a half-wave potential of 0.81 V (vs. RHE) and a high limiting current density (5.59 mA cm-2), comparable to a commercial Pt/C. The catalyst also shows good methanol tolerance as compared to Pt/C catalyst. This work highlights a bottom-up strategy for creating ternary Fe, N, B sites on carbon nanotubes using boron-containing ionic liquid precursor.

11.
Nanoscale ; 10(8): 3981-3989, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29424854

RESUMEN

Pyridinic-nitrogen highly doped nanotubular carbon (NTC) arrays with multimodal pores in the wall were synthesized via a one-step template strategy using 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as both carbon and nitrogen precursors and ZnO nanowire (ZnO NW) arrays grown on carbon clothes as templates for high-performance supercapacitors (SCs). A strikingly high N-doping level of 14.3% and pyridine N (N-6) dominance as high as 69.1% of the total N content were achieved. Both the N content and N configuration can be well tailored by adjusting the carbonization temperatures of TATB. When directly applied as flexible SCs, the N-doped NTC yields a high specific capacitance of 310.7 F g-1 (0.8 A g-1), a cycling retention ratio of 105.1% after 20 000 charge-discharge cycles, and excellent capacitance retention rates of 93.6%, 74.2%, and 53.6% at 8 A g-1, 40 A g-1, and 80 A g-1, respectively, as compared to the value at 0.8 g-1. TATB, as the only precursor of C and N, is expected to be of great significance for the further design and synthesis of N-doped sp2 carbon nanostructures with selective N configurations and controlled N content.

12.
J Colloid Interface Sci ; 481: 13-9, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27450887

RESUMEN

Quasi-noble-metal graphene quantum dots (GQDs) deposited stannic oxide (SnO2) with oxygen vacancies (VOs) were prepared by simply sintering SnO2 and citric acid (CA) together. The redox process between SnO2 and GQDs shows the formation of oxygen vacancy states below the conduction band of stannic oxide. The produced VOs obviously extend the optical absorption region of SnO2 to the visible-light region. Meanwhile, GQDs can effectively improve the charge-separation efficiency via a quasi function like noble metal and promote the visible-light response to some degree. In addition, the samples calcinated at 450°C reveals the best performance because of its relatively high concentrations of VOs. What is more, the possible degradation mechanism has been inferred as extended visible-light response as well as raised charge-separation efficiency has also been put forward. Our work may offer a simple strategy to combine the defect modulation and noble metal deposition simultaneously for efficient photocatalysis.

13.
J Colloid Interface Sci ; 450: 381-387, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25854505

RESUMEN

The pencil-like ZnO hollow tubes with 9-12 µm in length, 350-700 nm in width, 200 nm in wall thickness coating with g-C3N4 have been prepared via a chemical deposition process. As compared with uncoated ZnO or g-C3N4, these g-C3N4/ZnO composites showed the enhanced photocatalytic activity which can be attributed to the heterojunction structure. Furthermore, it is worth pointing out that the weight ratios of g-C3N4 to ZnO (g-C3N4/ZnO) played a significantly influence on the photodegradable properties. With increasing the mass ratio, the photocatalytic activity increased firstly and then decreased after reaching to an optimal photocatalytic performance. It can be inferred that the appreciation of g-C3N4 on the ZnO surface can improve the contact area which resulted in high separation of electrons and holes. However, excessive g-C3N4 may hinder the electrons transferring from the g-C3N4 to ZnO, and thus worse its photocatalytic performance. In our study, the g-C3N4/ZnO sample prepared with 10 wt% of g-C3N4 exhibited the optimal photodegradable efficiency which 94% of Rhodamine B (RhB) has been degraded just in 2 h.

14.
ACS Appl Mater Interfaces ; 7(42): 23431-8, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26457724

RESUMEN

Blue oxygen-deficient nanoparticles of anatase TiO2 (H-TiO2) are synthesized using a modified hydrogenation process. Scanning electron microscope and transmission electron microscope images clearly demonstrate the evident change of the TiO2 morphology, from 60 nm rectangular nanosheets to much smaller round or oval nanoparticles of ∼17 nm, after this hydrogenation treatment. Importantly, electron paramagnetic resonance and positronium annihilation lifetime spectroscopy confirm that plentiful oxygen vacancies accompanied by Ti(3+) are created in the hydrogenated samples with a controllable concentration by altering hydrogenation temperature. Experiments and theory calculations demonstrate that the well-balanced Li(+)/e(-) transportation from a synergetic effect between Ti(3+)/oxygen vacancy and reduced size promises the optimal H-TiO2 sample a high specific capacity, as well as greatly enhanced cycling stability and rate performance in comparison with the other TiO2.

15.
Nanoscale Res Lett ; 8(1): 193, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23618313

RESUMEN

Large-area, vertically aligned silicon nanowires with a uniform diameter along the height direction were fabricated by combining in situ-formed anodic aluminum oxide template and metal-assisted chemical etching. The etching rate of the Si catalyzed using a thick Au mesh is much faster than that catalyzed using a thin one, which is suggested to be induced by the charge transport process. The thick Au mesh in contact with the Si produces a low Au/Si Schottky barrier height, facilitating the injection of electronic holes from the Au to the Si, thus resulting in a high etching rate.

16.
Nanoscale Res Lett ; 7(1): 663, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23217211

RESUMEN

In the current study, monocrystalline silicon nanowire arrays (SiNWs) were prepared through a metal-assisted chemical etching method of silicon wafers in an etching solution composed of HF and H2O2. Photoelectric properties of the monocrystalline SiNWs are improved greatly with the formation of the nanostructure on the silicon wafers. By controlling the hydrogen peroxide concentration in the etching solution, SiNWs with different morphologies and surface characteristics are obtained. A reasonable mechanism of the etching process was proposed. Photocatalytic experiment shows that SiNWs prepared by 20% H2O2 etching solution exhibit the best activity in the decomposition of the target organic pollutant, Rhodamine B (RhB), under Xe arc lamp irradiation for its appropriate Si nanowire density with the effect of Si content and contact area of photocatalyst and RhB optimized.

17.
J Colloid Interface Sci ; 377(1): 291-8, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22537655

RESUMEN

This study reported, for the first time systematically, photodegradation of Rhodamine B (RhB) in aqueous solution over BiOCl and BiOBr semiconductors. Under visible light irradiation (λ>400 nm, λ>420 nm and λ=550±15 nm), RhB adsorbed on the surface of BiOCl and BiOBr was photosensitized and decomposed effectively over unexcited BiOCl and BiOBr. The degradation of Methyl Orange (MO) and Methylene Blue (MB) over BiOCl and BiOBr was investigated as well, and the results were compared with RhB photodegradation. It was found that MB molecules having the lowest LUMO could not be degraded by this process. Utilizing the quantum chemical calculation (Gaussian 03 program), the relationship between frontier orbital energy of selected dye molecules and photodegradation rate was established for the first time in this study.


Asunto(s)
Bismuto/química , Luz , Rodaminas/química , Procesos Fotoquímicos , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA