Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 79(2): 280-292.e8, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32533919

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico , Sistemas Toxina-Antitoxina , Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/crecimiento & desarrollo , Plásmidos/genética , Proteolisis , ARN Bacteriano/metabolismo , RNA-Seq , Sistemas Toxina-Antitoxina/genética
2.
Nucleic Acids Res ; 46(6): 3245-3256, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514271

RESUMEN

Canonical bacterial transcription activators bind to non-transcribed promoter elements to increase transcription of their target genes. Here we report crystal structures of binary complexes comprising domains of Caulobacter crescentus GcrA, a noncanonical bacterial transcription factor, that support a novel mechanism for transcription activation through the preferential binding of methylated cis-regulatory elements and the promotion of open complex formation through an interaction with region 2 of the principal σ factor, σ70. We present crystal structures of the C-terminal, σ factor-interacting domain (GcrA-SID) in complex with domain 2 of σ70 (σ702), and the N-terminal, DNA-binding domain (GcrA-DBD) in complex with methylated double-stranded DNA (dsDNA). The structures reveal interactions essential for transcription activation and DNA recognition by GcrA. These structures, along with mutational analyses, support a mechanism of transcription activation in which GcrA associates with RNA polymerase (RNAP) prior to promoter binding through GcrA-SID, arming RNAP with a flexible GcrA-DBD. The RNAP-GcrA complex then binds and activates target promoters harboring a methylated GcrA binding site either upstream or downstream of the transcription start site.


Asunto(s)
Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
3.
Curr Opin Microbiol ; 72: 102266, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745965

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), accounts for over ten million infections and over 1.5 million deaths every year [1]. Upon infection, the seesaw between Mtb and our immune systems creates microenvironments that are compositionally distinctive and changing over time. While the field has begun to better understand the spatial complexity of TB disease, our understanding and experimental dissection of the temporal dynamics of TB and TB drug treatment is much more rudimentary. However, it is the combined spatiotemporal heterogeneity of TB disease that creates niches and time windows within which the pathogen can survive and thrive during treatment. Here, we review the emerging data on the interactions of spatial and temporal dynamics as they relate to TB disease and treatment. A better understanding of the interactions of Mtb, host, and antibiotics through space and time will elucidate treatment failure and potentially identify opportunities for new TB treatment regimens.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Tuberculosis/microbiología
4.
bioRxiv ; 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38014062

RESUMEN

Human challenge experiments could greatly accelerate the development of a tuberculosis (TB) vaccine. Human challenge for tuberculosis requires a strain that can both replicate in the host and be reliably cleared. To accomplish this, we designed Mycobacterium tuberculosis (Mtb) strains featuring up to three orthogonal kill switches, tightly regulated by exogenous tetracyclines and trimethoprim. The resultant strains displayed immunogenicity and antibiotic susceptibility similar to wild-type Mtb under permissive conditions. In the absence of supplementary exogenous compounds, the strains were rapidly killed in axenic culture, mice and nonhuman primates. Notably, the strain that contained three kill switches had an escape rate of less than 10 -10 per genome per generation and displayed no relapse in a SCID mouse model. Collectively, these findings suggest that this engineered Mtb strain could be a safe and effective candidate for a human challenge model.

5.
Science ; 378(6624): 1111-1118, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480634

RESUMEN

The widespread use of antibiotics has placed bacterial pathogens under intense pressure to evolve new survival mechanisms. Genomic analysis of 51,229 Mycobacterium tuberculosis (Mtb)clinical isolates has identified an essential transcriptional regulator, Rv1830, herein called resR for resilience regulator, as a frequent target of positive (adaptive) selection. resR mutants do not show canonical drug resistance or drug tolerance but instead shorten the post-antibiotic effect, meaning that they enable Mtb to resume growth after drug exposure substantially faster than wild-type strains. We refer to this phenotype as antibiotic resilience. ResR acts in a regulatory cascade with other transcription factors controlling cell growth and division, which are also under positive selection in clinical isolates of Mtb. Mutations of these genes are associated with treatment failure and the acquisition of canonical drug resistance.


Asunto(s)
Antibióticos Antituberculosos , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Evolución Molecular , Mycobacterium tuberculosis , Factores de Transcripción , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Genómica , Insuficiencia del Tratamiento , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Tuberculosis Resistente a Múltiples Medicamentos/genética , Antibióticos Antituberculosos/farmacología , Antibióticos Antituberculosos/uso terapéutico , Selección Genética , Proteínas Bacterianas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA